首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hot tensile properties of as cast NiTi and NiTiCu shape memory alloys were investigated by hot tensile test at temperature range of 700–1100 °C using the strain rate of 0.1 s−1. The NiTi alloy exhibited a maximum hot ductility at temperature range of 750–1000 °C, while the NiTiCu alloy showed it at temperature range of 800–1000 °C. It was found that at temperatures less than 750 °C, diffusion-assisted deformation mechanism was inactive leading to semi-brittle type of failure and limited ductility in both alloys. Also it was found that at temperature range of 800–1000 °C, dynamic recrystallization is dominant leading to high ductility. Likewise, the fracture surface of the specimens presenting the maximum hot ductility showed an ideal type of ductile rupture in which they gradually pulled out to a fine point. On the other hand, the decline in ductility occurred at the temperatures above 1000 °C was attributed to the liquid phase formation leading to interdendritic and intergranular type of fracture.  相似文献   

2.
In the present work, the influence of γ eutectic phase on the cavitation behavior of wrought AZ31 magnesium alloy has been studied through applying a set of low strain rate hot tensile tests. The tensile tests were executed in two temperature range of 300–425 °C and 450–500 °C; i.e. somewhat below and higher eutectic melting temperature of γ precipitates (∼437 °C). The hot compression characteristics of the experimental alloy were also considered to assist explaining the related deformation mechanisms. The results indicated that a large amount of cavities originates from the γ second phases, specially located on grain boundaries. A sharp transition was realized from higher (>3%) to lower cavity area fraction (<0.02%) between 450 °C and 500 °C. The latter was attributed to the effect of γ liquid phase on stress relaxation through accommodating the grain boundary sliding phenomena. In addition, the current work explores the room temperature mechanical properties of tensile deformed specimens using shear punch testing method.  相似文献   

3.
The hot ductility of Fe–29Ni–17Co alloy was studied in both cast and wrought conditions by hot tensile tests over temperature range of 900–1250 °C and at strain rates of 0.001–1 s−1. Over the studied temperature range, the wrought alloy represented higher elongation and reduction in area as compared to the cast alloy. Dynamic recrystallization was found responsible for the higher hot ductility of the wrought alloy and the improvement of hot ductility of the cast alloy at high temperatures. At temperature range of 1000–1150 °C the wrought alloy exhibited a hot ductility drop while a similar trough was not observed in case of the cast alloy. It was also found that at temperatures of 1150–1250 °C the best hot ductility is achieved in both cases of cast and wrought alloy. The experimental data of flow stress were constitutively analyzed and the apparent activation energy of deformation was estimated to be 344 kJ/mol.  相似文献   

4.
The deformation behavior and microstructural evolution of a 7075-T6 aluminum alloy have been investigated through applying hot compression tests at different temperatures and strain rates (450, 500, 520, 550, 580 °C and 0.004, 0.04 and 0.4 s−1). The peak stress levels in different conditions were extracted from the related true stress–true strain curves. Different dynamic recrystallization (DRX) mechanisms including continuous, discontinuous and geometrical ones were proposed to justify the corresponding results of various thermomechanical processing conditions. Furthermore, the results indicated that the recrystallized structure had been spheroidized in the semi-solid temperature range due to the liquid pressure and their sizes were reduced with increasing the strain rate.  相似文献   

5.
The isothermal compression deformation behavior of TC11 titanium alloy with beta microstructure was studied between 750 °C and 1100 °C under the strain rate ranging from 0.001 s−1 to 10 s−1 by THERMECMASTOR-Z simulator. In addition, the effect of temperature on microstructure was observed using optical microscope. The results showed that the temperature greatly affected the flow stress and microstructure of TC11 titanium alloy cooled from beta phase region in air. During hot deformation of TC11 titanium alloy, the steady state flow characteristic was observed at higher temperature or lower strain rate. In the α + β phase region, spheroidization fraction of α lamellar decreased with increasing temperature, while in near-β and β phase regions, dynamic recrystallization fraction increased with increasing temperature in all strain rates except at the strain rate of 0.001 s−1.  相似文献   

6.
Long-term thermal stability is often needed for high temperature alloys used in a variety of industrial applications for extended operating lifetimes. In this paper, the effects of thermal exposures or aging on the mechanical properties and microstructure of a Ni–Co–Cr–Si alloy (HAYNES® HR-160® alloy) were studied. It includes both short- and long-term elevated temperature exposures ranging from 649 °C to 1093 °C (1200–2000 F) for duration of 6 min (0.1 h) to 6 years (50,000 h). The residual room temperature (RT) tensile and Charpy-V impact toughness properties were evaluated and correlated to microstructural changes as well as to fracture surfaces of the tensile tested samples. It was found that the RT ductility and impact toughness of the HR-160 alloy decreased continuously with time. A significant percentage of reduction in the ductility occurred in the initial 1000 h of exposure and the subsequent exposure led only to a minimal loss of ductility and impact toughness values. The concomitant microstructural changes were studied using optical metallography, SEM/EDS and X-ray diffraction of extracted residues. The results presented in this paper demonstrated that the HR-160 alloy exhibits good thermal stability characterized by >16% RT elongation after 50,000 h exposures at 649 °C, 760 °C, and 871 °C.  相似文献   

7.
In the present work, the study of dynamic strain aging (DSA) in near α titanium alloy Timetal 834 is reported in terms of internal hardening variables (kinematic and isotropic hardening variable). Total strain controlled low cycle fatigue tests have been conducted in air at 300 °C and from 400 °C to 500 °C at a temperature interval of 25 °C at nominal strain rates of 6.67 × 10−3 s−1. The alloy exhibits gradual cyclic softening till failure at 300 °C, whereas, it exhibits initial cyclic softening followed by marked cyclic hardening from 400 °C to 500 °C. The cyclic hardening is attributed to DSA phenomena, resulting due to increase in isotropic stress component. The observed maximum peak stress ratio, lower fatigue life and minimum half-life plastic strain range at 450 °C indicates the maximum effect of DSA at that temperature. The fatigue life of tensile and compressive hold at 450 °C was observed to be inferior as compared to pure fatigue tests.  相似文献   

8.
The elevated-temperature plasticity and flow behavior of an Er-modified, heat-resistant ZA73 alloy was evaluated by thermal simulation. The results showed that the addition of Er to ZA73 alloy notably improves the deformability and higher strain rate and temperature favors hot deformation. Bars with sound surface quality were successfully extruded at 350 °C and a strain rate of ~ 0.1 s− 1. Furthermore, dynamic precipitation of nano-sized spherical τ phase was found to occur uniformly in the α-Mg matrix during hot extrusion, which is considered helpful to both strength and plasticity enhancement. The yield strength and ultimate tensile strength of the as-extruded bars reached 240-265 MPa and 355-360 MPa, respectively, while maintaining a large elongation rate of 18-19.5%.  相似文献   

9.
The hot deformation behaviors of Ag-containing 2519 aluminum alloy were studied by isothermal compression at 300–500 °C with strain rates from 0.01 s−1 to 10 s−1. The microstructural evolution of the alloy was investigated using Polyvar-MET optical microscope and Tecnai G2 20 transmission electron microscope (TEM). It has been shown that the flow stress of the alloy increases with increasing the strain rate and decreasing the deformation temperature. When the strain rate is lower than 10 s−1, the flow stress increases with increasing strain until the stress reached the peak value, after which the flow stress remains almost constant. This result indicates that dynamic recovery happens during deformation. When the strain rate is 10 s−1 and the temperature is higher than 300 °C, serrated flow behavior is generally observed with the stress decreasing with increasing strain, a typical phenomenon of dynamic recrystallization.  相似文献   

10.
D.Q. Peng  X.D. Bai  H. Sun 《Vacuum》2006,80(6):530-536
The beneficial effect of aluminum ion implantation on the oxidation behavior of ZIRLO alloy at 500 °C has been studied. ZIRLO alloy specimens were implanted with aluminum ions with fluence range from 1×1016 to 1×1018 ion/cm2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 °C. The weight gain curves were measured after being oxidized in the air at 500 °C for 120 min, which showed that a significant improvement was achieved in the oxidation behavior of ZIRLO alloy implanted with aluminum compared with that of the virgin ZIRLO alloy. It has been obviously found that when the fluence is 1×1018 ion/cm2, the oxidization of the implanted ZIRLO alloy is reduced into 30% of the virgin ZIRLO alloy.  相似文献   

11.
A new Mg-7.8%Li-4.6%Zn-0.96%Ce-0.85%Y-0.30%Zr alloy has been developed. α phase, β phase and RE-containing intermetallics formed in the alloy. It is found that the alloy can easily be extruded at 260 °C with σ0.2 = 256 MPa, σb = 260 MPa and δ = 14%. Hot deformation behavior of the extruded alloy was studied using the processing map technique. Compression tests were conducted in the temperature range of 250-450 °C and strain rate range of 0.001-10 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (1) Domain I occurs in the temperature range of 250-275 °C and strain rate range of 1-10 s−1, with a peak efficiency of about 50% at 250 °C/10 s−1. Incomplete DRX process has occurred in β phase and DRX process hardly occurs in α phase; (2) Domain II occurs in the temperature range of 250-275 ?C and strain rate range of 0.001-0.003 s−1, with a peak efficiency of about 42% at 250 °C/0.001 s −1. Incomplete DRX process has occurred in β phase and α phase; (3) Domain III occurs in the temperature range of 400-450 °C and strain rate range of 1-10 s−1, with a peak efficiency of about 42% at 450 °C/10 s−1. Complete DRX process has occurred in β phase and α phase. No cracking, cavity and band of flow localization are observed in flow instability region. The optimum parameters for hot working of the alloy are 250 °C/10 s−1 and 250 °C/0.001 s−1, at which fine dynamic recrystallization microstructure will be achieved. RE-containing intermetallics and α phase accelerate the DRX process in β phase. The softer β phase reduces the driving force for DRX process in α phase, so DRX process in α phase is retarded.  相似文献   

12.
The deformation behavior of a Ti40 titanium alloy was investigated with compression tests at different temperatures and strain rates to evaluate the activation energy and to establish the constitutive equation, which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The tests were carried out in the temperature range between 900 and 1100 °C and at strain rates between 0.01 and 10 s−1. Hot deformation activation energy of the Ti40 alloy was calculated to be about 372.96 kJ/mol. In order to demonstrate the workability of Ti40 alloy further, the processing maps at strain of 0.5 and 0.6 were generated respectively based on the dynamic materials model. It is found that the dynamic recrystallization of Ti40 alloy occurs at the temperatures of 1050-1100 °C and strain rates of 0.01-0.1 s−1, with peak efficiency of power dissipation of 64% occurring at about 1050 °C and 0.01 s−1, indicating that this domain is optimum processing window for hot working. Flow instability domains were noticed at higher stain rate (≥1 s−1) and stain (≥0.6), which located at the upper part of the processing maps. The evidence of deformation in these domains has been identified by the microstructure observations of Ti40 titanium alloy.  相似文献   

13.
The mechanical properties of magnesium matrix composites reinforced by pyrolytic carbon coated short carbon fiber at temperatures close to and above the solidus temperature were investigated by tensile tests for the first time. Microstructural observations and fractographic analysis were carried out in order to reveal the damage mechanisms of the composites with different fraction of liquid. Tensile strength of the composites decreased monotonously with temperature, an exponential equation relating the tensile strength to temperature and liquid fraction was derived. The elongation increases monotonously with temperatures from 400 °C to 428 °C (solidus temperature), and then decreases gradually with increasing fraction of liquid except a trough at 432 °C. The composites almost have no ductility and cannot sustain tensile stress when the fraction of liquid reaches 8%. The amount and distribution of liquid phase in the composites directly determines their mechanical properties and damage behavior.  相似文献   

14.
To improve the plasticity of friction stir welded joints for plastic processing applications, post-weld heat treatment (PWHT) of 2024-O aluminum alloy friction stir welding joints was carried out at annealing temperatures from 250 °C to 450 °C with an interval of 50 °C for 2 h, followed by cooling to 200 °C in the furnace. The effect of PWHT on the microstructure and plastic deformation behavior of the joints was investigated. It was found that the fine-equiaxed grains are stable and retained in the nugget of the joints even after annealing at 450 °C for 2 h. However, the grains in the thermo-mechanically affected zone (TMAZ) of the joints become coarse and equiaxed as annealing temperature increases. The plastic deformation of as-welded joint is very heterogeneous. In contrast, the plastic deformation of PWHT joint is relatively homogeneous by both the nugget and the base material showing large deformation. The decrease in elongation of as-welded joints is completely recovered by PWHT. The high ductility of the joint is mainly attributed to the retention of the fine-equiaxed grains in the nugget during PWHT.  相似文献   

15.
The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s−1. Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.  相似文献   

16.
High-temperature deformation behavior of Ti60 titanium alloy   总被引:2,自引:0,他引:2  
Isothermal compressions of near-alpha Ti60 alloy were carried out on a Gleeble-3800 simulator in the temperature range of 960-1110 °C and strain rate range of 0.001-10.0 s−1. The high-temperature deformation behavior was characterized based on an analysis of the stress-strain behavior, kinetics and processing map. The flow stress behavior revealed greater flow softening in the two-phase field compared with that of single-phase field. In two-phase field, flow softening was caused by break-up and globularization of lamellar α as well as deformation heating during deformation. While in the single-phase field, flow softening was caused by dynamic recovery and recrystallization. Using hyperbolic-sine relationships for the flow stress data, the apparent activation energy was determined to be 653 kJ/mol and 183 kJ/mol for two-phase field and single-phase field, respectively. The processing map exhibited two instability fields: 960-980 °C at 0.3-10 s−1 and 990-1110 °C at 0.58-10 s−1. These fields should be avoided due to the flow localization during the deformation of Ti60 alloy.  相似文献   

17.
The effects of cryorolling and optimum heat treatment (short annealing + ageing) on tensile and impact-toughness behaviour of Al 7075 alloy have been investigated in the present work. The Al 7075 alloy was rolled for different thickness reductions (40% and 70%) at cryogenic (liquid nitrogen) temperature and its mechanical properties were studied by using tensile testing, hardness, and Charpy impact testing. The microstructural characterization of the alloy was carried out by using field emission scanning electron microscopy (FE-SEM). The cryorolled Al alloy after 70% thickness reduction exhibits ultrafine grain structure as observed from its FE-SEM micrographs. It is observed that the yield strength and impact toughness of the cryorolled material up to 70% thickness reduction have increased by 108% and 60% respectively compared to the starting material. The improved tensile strength and impact toughness of the cryorolled Al alloy is due to grain refinement, grain fragments with high angle boundaries, and ultrafine grain formation by multiple cryorolling passes. Scanning electron microscopy (SEM) analysis of the fracture surfaces of impact testing carried out on the samples in the temperature range of −200 to 100 °C exhibits ductile to brittle transition. cryorolled samples were subjected to short annealing for 5 min at, 170 °C, and 150 °C followed by ageing at 140 °C and 120 °C for both 40% and 70% reduced samples. The combined effect of short annealing and ageing, improved the strength and ductility of cryorolled samples, which is due to precipitation hardening and subgrain coarsening mechanism respectively. On the otherhand, impact strength of the cryorolled Al alloy has decreased due to high strain rate involved during impact loading.  相似文献   

18.
Compression tests of 6061/B4CP composite have been performed in the compression temperature range from 300 °C to 500 °C and the strain rate range from 0.001 s−1 to 1 s−1. The flow behavior and processing map have been investigated using the corrected data to elimination of effect of friction. The processing maps exhibited two deterministic domains, one was situated at the temperature between 300 °C and 400 °C with strain rate between 0.003 s−1 and 0.18 s−1 and the other was situated at the temperature between 425 °C and 500 °C with strain rate between 0.003 s−1 and 0.18 s−1.The estimated apparent activation energies of these two domains, were 129 kJ/mol and 149 kJ/mol, which suggested that the deformation mechanisms were controlled by cross-slip and lattice self-diffusion respectively. The optimum parameters of hot working for the experimental composite were 350 °C - 0.01 s−1 and 500 °C - 0.01 s−1. In order to exactly predict dangerous damaging mechanism under different deformation conditions exactly, Gegel’s criterion was applied to obtain processing map in the paper. The result showed that the processing map used Gegel’s criterion can be effectively to predict the material behavior of the experimental composite.  相似文献   

19.
Fine-scale precipitation of the η′ phase and its precursors are essential for the mechanical properties of Al-4.6 wt%Zn-1.2 wt%Mg alloy. This paper deals with an investigation of precipitation in an industrial Al–Zn–Mg alloy at various stages of a conventional two-step ageing treatment at 70 °C and 135 °C. The effect of microstructure on the mechanical properties was performed using microhardness and tensile tests, together with optical, scanning and transmission electron microscopy. After ageing at 135 °C, corresponding to the maximum value of hardness, small η′ precipitates were observed in the alloy matrix. After two-step ageing at 70 °C plus at 135 °C, the volume fraction of this precipitate becomes higher. Consequently, the yield strength of the material increases and it maintains its ductility. This high precipitate density slows the dislocation movement and thus a higher stress was required for its bowing.  相似文献   

20.
The hot-working characteristics of wrought Co-Ni-Cr-Mo implant alloy during ingot-to-billet conversion were evaluated using a Gleeble-2000A simulator. The hot tensile test at 700–1 320 °C was used to determine the optimum hot-working parameters at a strain rate equivalent to that of conventional press forging to ensure acceptable hot workability. Hot ductility and deformation resistance as a function of temperature can be clearly established. The fracture surfaces of the tensile specimens were examined to correlate them with the hot tensile ductility values at various temperatures. The poor ductility at temperatures above 1300 °C was attributed to the incipient melting of grain boundaries. The effect of temperature and strain rate on the flow-stress behaviour and microstructures were investigated by uniaxial compression testing in the temperature range 900–1200 °C and strain rate, , range of 0.01–10s–1. The strain-hardening and steady-state behaviour were described from the measured true stress-true strain curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号