首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 304 stainless steel plate was lap joined to a CP-Ti one by friction stir welding technique. Stainless steel was selected as the top member. Sound dissimilar joints were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700–1100 rpm. A region of vortices of bimetallic weld of 304 stainless steel and CP-Ti was formed in the lap joint fabricated using the highest applied tool rotation speed; this was associated with plasticizing of both members with the aid of a double-shoulder tool. In addition, due to complex material flow, mechanical interlock features were shaped that consists of extruded stainless steel into the plasticized titanium region. A maximum shear strength value of ∼119 MPa was achieved; this was found to be close to that of CP-Ti. The lap joint was strengthened by the formation of vortices of bimetallic weld of 304 stainless steel and CP-Ti and mechanical interlock features at joint interface due to complex materials flow.  相似文献   

2.
The feasibility of dissimilar friction stir welding (FSW) in overlap configuration between Ti–6Al–4V alloy (Ti64) and AISI 304 austenitic stainless steels (304SS) was investigated. Sound joints were achieved when placing titanium as the upper workpiece. Joints were successfully produced by employing a welding speed of 1 mm/s and rotational speeds of 300 and 500 rpm. A lamellar microstructure was formed in the stir zone of Ti64, where grain size was found to increase with increasing rotational speed, and austenitic equiaxed grains were obtained near the interface of 304SS coupon. Energy dispersive X-ray spectroscopy (SEM-EDS) of the interface revealed a thin intermixed region and suggested intermetallic compound formation. Microhardness data in the titanium weld zone for both rotational speeds exhibited slightly lower values than the base material, with the lowest values in the heat affected zone, whereas the microhardness values in the stainless steel side around the weld center were found to be higher than those obtained for the base material.  相似文献   

3.
A commercially pure titanium plate was lap joined to a structural steel plate via friction stir welding, and the microstructures at the lap joint interface were intensively examined by means of electron backscatter diffraction analysis and transmission electron microscopy. Swirling-like macro- and micro-intermixing zones of titanium and steel are formed along the interface, where tiny Fe-Ti intermetallic particles are dispersed and mixed with β titanium in layers. The lap joint has high shear tensile strength, which is supposed to result from the dispersion of tiny Fe-Ti intermetallic particles and the formation of β titanium at the joint interface.  相似文献   

4.
2 mm thick Fe–18.4Cr–15.8Mn–2.1Mo–0.66N high nitrogen austenite stainless steel plate was successfully joined by friction stir welding (FSW) at 800 rpm and 100 mm/min. FSW did not result in the loss of nitrogen in the nugget zone. The arc-shaped band structure, consisting of a small amount of discontinuous ferrite aligning in the bands and fine austenite grains, was a prominent microstructure feature in the nugget zone. The discontinuous ferrite resulted from newly formed ferrite during welding and the remained ferrite, whereas the fine austenite grains were formed due to dynamic recrystallization of the initial austenite during FSW. The fine dynamically recrystallized grains in the nugget zone significantly increased the hardness compared to that of the base material. The strength of the joint was similar to that of the base material, with the joint failing in the base material zone.  相似文献   

5.
Dissimilar metals of 1045 carbon steel and 304 stainless steel are joined successfully by friction welding. The microstructure variation and mechanical properties are studied in detail. The weld interface can be clearly identified in central zone, while the two metals interlock with each other by the mechanical mixing in peripheral zone. On carbon steel side, a thin proeutectoid ferrite layer forms along weld interface. On stainless steel side, austenite grains are refined to submicron scale. The δ-ferrite existing in stainless steel decreases from base metal to weld interface and disappears near the weld interface. Severe plastic deformation plays a predominant role in rapid dissolution of δ-ferrite compared with the high temperature. Carbide layer consisting of CrC and Cr23C6 forms at weld interface because of element diffusion. Metastable phase CrC is retained at room temperature due to the highly non-equilibrium process and high cooling rate in friction welding. The fracture appearance shows dimple fracture mode in central zone and quasi-cleavage fracture mode in peripheral zone. Further analysis indicates that welding parameters govern tensile properties of the joint through influencing the thickness of carbide layer at weld interface and heterogeneous microstructure in thermo-mechanically affected zone on carbon steel side.  相似文献   

6.
The dissimilar butt welded joint of reduced-activation ferritic/martensitic steel (RAF/M) F82H and austenite stainless steel (AISI304 (SUS304)) were studied by friction stir welding. The effect of the position of the steels and tool plunging was considered in order to prohibit the mixing of the F82H and SUS304. When the dissimilar butt welding was performed such that the F82H plate was on the advancing side and the tool was plunged on the F82H side, defect-free joints could be successfully fabricated. Optical microscopy and EDX analysis were used to characterize the dissimilar joint microstructures and the interface. It was confirmed that the dissimilar joint formed no mixed structure and inter-metallic compounds.  相似文献   

7.
目的 研究搅拌头转速和轴套下压量对异质铝合金回填式搅拌摩擦点焊接头的组织及力学性能的影响。方法 采用回填式搅拌摩擦点焊技术对7050铝合金和2524铝合金进行搭接焊试验,焊接完成后利用光镜、体式显微镜、扫描电镜对组织进行观察,另外,测试拉伸剪切载荷和显微硬度分布,最后对断裂行为进行了研究。结果 接头区域可以分为焊核区、热力影响区、热影响区、母材4个区域,焊核区晶粒呈细小等轴状,热力影响区晶粒呈粗大长条状。随搅拌头转速的增大,拉剪载荷降低,当转速为1500 r/min时拉剪载荷值最高,其值为7.499 44 kN。热影响区的显微硬度比母材低,最小值为HV106。接头的断裂方式可以分为剪切型断裂、塞型断裂、剪切-半环型断裂。结论 在一定工艺参数范围内,通过适当降低搅拌头转速能显著提高接头的拉剪载荷,轴套下压量对接头的断裂方式影响显著。  相似文献   

8.
The microstructures and mechanical properties of friction stir welded Inconel 600 and SS 400 lap joints were evaluated in this study. Friction stir welding was carried out at a tool rotation speed of 200 rpm and a welding speed of 100 mm/min. Application of friction stir welding was notably effective in reducing the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. The joint interface between Inconel 600 and SS 400 was soundly welded without voids and cracks, and MC carbides with a size of 50 nm were partially formed in the region of the lap joint interface in Inconel 600. In addition, a hook from SS 400 was formed on the advancing side of the Inconel 600 alloy, which directly affected an increase in the peel strength of the weld. In this study, we systematically discussed the effect of friction stir welding on the evolution of the microstructures and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.  相似文献   

9.
A laser welding–brazing (LWB) technology using Mg based filler has been developed for joining Mg alloy to mild steel and Mg alloy to stainless steel in a lap configuration. Microstructure and mechanical properties of laser welded–brazed lap joints in both cases were comparatively studied. The results indicated that no distinct reaction layer was observed at the interface of Mg/mild steel and subsequently the interface was confirmed as mechanical bonding, whereas an ultra thin reaction layer with a continuous and uniform morphology was evidenced at the Mg/stainless steel interface, which was indicative of metallurgical bonding. The newly formed interfacial layer was indexed as FeAl phase by transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). The average tensile–shear strength of Mg/mild steel joint was only 142 N/mm with typical interfacial failure, while that of Mg/stainless steel joint could reach 270 N/mm, representing 82.4% joint efficiency relative to the Mg alloy base metal. The fracture location of Mg/stainless steel joint was at Mg fusion welding side, suggesting the interface was not weak point due to the formation of ultra thin interfacial layer. The role of alloying elements in base metal and bonding mechanism of the interfacial layer were discussed, respectively.  相似文献   

10.
不锈钢—碳钢单、双面复合板的爆炸焊接及性能研究   总被引:2,自引:0,他引:2  
研究了不锈钢-碳钢单面、双面复合板爆炸焊接质量,结合界面的微观结构,剪切强度及耐蚀性能,结果表明,单、双面不锈钢-低碳爆炸焊接复合板的结合界面均为波状结构,结合面两侧存在一定组织变形,近界面处为角结晶组织,稍远处为拉伸变形后的维状组织,结合界面碳钢-侧过渡区存在增碳区,不锈钢一侧有一个脱碳层,双面复合界面的结合过渡区的单面为1.5倍宽,脱碳区也接近单面的1.5倍,采用切割爆炸焊接法有利于改善不锈钢-低碳钢复合板的边缘焊合,在同一基板上进行了双面不锈钢复合时,第一面复合界面的剪切强度比第二面复合界面的差,还是双面复合板,其界面结面强度均由起爆端的末端逐渐降低,结合界面的脱碳层对复合的耐蚀性能无明显影响。  相似文献   

11.
Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.  相似文献   

12.
A major dilemma faced in the nuclear industry is repair of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for repair, intergranular cracks develop in the heat-affected zone(HAZ). Friction stir processing(FSP), which operates at much lower peak temperatures than fusion welding, was studied as a crack repair method for irradiated 304 L stainless steel. A numerical simulation of the FSP process in 304 L was developed to predict temperatures and recrystallized grain size in the stir zone. The model employed an Eulerian finite element approach,where flow stresses for a large range of strain rates and temperatures inherent in FSP were used as input. Temperature predictions in three locations near the stir zone were accurate to within 4%, while prediction of welding power was accurate to within 5% of experimental measurements. The predicted recrystallized grain sizes ranged from 7.6 to 10.6 μm, while the experimentally measured grains sizes in the same locations ranged from 6.0 to 7.6 μm. The maximum error in predicted recrystallized grain size was about 39%, but the associated stir zone hardness from the predicted grain sizes was only different from the experiment by about 10%.  相似文献   

13.
5 mm-Thick dissimilar AA2024-T3 and AA7075-T6 aluminum alloy sheets were friction stir lap welded in two joint combinations, i.e., (top) 2024/7075 (bottom) and 7075/2024. The influences of process conditions (welding speed and joint combination) on defects (hook and voids) features and mechanical properties of joints were investigated in detail. It was found that the hook deflects largely upwards into the stir zone (SZ) at lower welding speeds (50, 150 mm/min) in both combinations. The process conditions significantly affect the hook geometry which in return affects the lap shear strength. In all 2024/7075 joints, voids appear and the joints fracture from the tip of hook on AS along the SZ/TMAZ (thermomechanically affected zone) interface in lap shear test (tensile fracture mode). In 7075/2024 joints, the hook on RS horizontally extends a large distance into the bottom stir zone at higher welding speeds (225, 300 mm/min). The joints fracture in three modes: shear fracture along the lap interfaces, tensile fracture and the mix fracture of both. In both joint combinations, the lap shear strength generally increases with the increase of welding speed. 7075/2024 Joints show higher failure load than 2024/7075 joints at lower welding speeds while the opposite result appears at higher welding speeds.  相似文献   

14.
采用新型超声振动强化搅拌摩擦焊接工艺实现了6061-T6铝合金以及QP980高强钢的搭接焊, 对比分析了有无超声作用下, 接头的宏观形貌、微观组织和拉伸剪切性能, 同时研究了超声振动对焊接载荷的影响。结果表明: 焊接前对母材施加超声振动, 可以起到软化母材的作用, 促进了材料的塑性流动, 扩大了铝/钢界面区和焊核区, 使更多的钢颗粒随搅拌针旋转进入铝合金侧, 在界面区边缘形成钩状结构, 进而提高了接头的失效载荷; 超声改变了FSW接头断裂位置和断口形貌, 提高了接头力学性能, 在本实验工艺参数范围内, 接头最大的平均失效载荷为4.99 kN; 当焊接速度为90 mm/min, 下压量为0.1 mm时, 施加超声振动使接头的平均失效载荷提高了0.98 kN, 拉剪性能提升28.24%;施加超声振动后轴向力Fz、搅拌头扭矩Mt和主轴输出功率分别下降2.46%, 6.44%和4.59%。  相似文献   

15.
目的 为了拓展搅拌摩擦焊技术应用,对薄板搭接结构高速搅拌摩擦焊工艺优化与工程应用提供 借鉴与指导。方法 采用圆锥无螺纹搅拌针,进行了 6061 铝合金薄板搭接高速搅拌摩擦焊接,对接头界 面缺陷及其断裂模式进行分析,探讨了转速对 6061 铝合金薄板搭接接头成形及性能的影响规律。结果 发现在无螺纹圆锥搅拌针、高转速(6000~9000 r/min)条件下,接头塑性金属在后退侧易形成飞边流出, 导致下板前进侧出现孔洞缺陷,且随转速增大,界面缺陷尺寸逐渐增大,当转速达到 10 000 r/min 时, 孔洞尺寸有所减小,此时接头拉剪强度最高,为 123 MPa。对试样拉剪断裂位置分析发现,高速搭接接 头断裂位置主要有两种,分别断裂在结合界面处或在前进侧下板,且转速在 9000 r/min 以上越趋向于在 结合界面断裂。结论 高转速搭接焊接必须协调轴肩相貌、焊接工装约束等条件,保证接头塑性金属充 分流动而不流失,才能获得成形良好无缺陷的接头。  相似文献   

16.
Abstract

The metallurgical and mechanical properties of friction welds between titanium and AISI 304L stainless steel were examined. Joint tensile strength increased when high friction pressure (>196 MN m?2) and high upsetting pressure (294 MN m?2) were used during welding. Although the surface roughness of the titanium substrate had no effect on joint strength, decreasing the surface roughness of the AISI 304L material did increase the tensile strength of completed joints. As welded dissimilar joints had poor bend test ductility and failed in the interface region. Detailed microscopy and X-ray diffraction analysis confirmed that the poor bend ductility was caused by a combination of high hardness of the titanium material immediately adjacent to the joint interface, the presence of unrelieved residual strain at the joint interface, and intermetallic phases formed during the welding operation. Detailed transmission electron microscopy and X-ray analysis confirmed that a thin layer rich in intermetallics was present in the as welded joints. (FeNiCr)Ti phases were formed during seizure formation and disruption; this provided the necessary conditions for anomalously high rates of diffusion of titanium in stainless steel, and of iron, chromium, and nickel in titanium. Low temperature post-weld heat treatment (PWHT), involving heating to 500–600°C followed by immediate air cooling, reduced intermetallic precipitation, promoted stress relaxation, and facilitated complete bonding across the whole joint interface. This treatment markedly improved bend ductility and had a negligible effect on joint tensile strength. High PWHT temperatures (≥900°C) and long holding times at temperature markedly reduced joint tensile strength and bend ductility, owing to excessive formation of intermetallic phases at the joint interface.

MST/1521  相似文献   

17.
In this study, resistance spot weldability of 180 grade bake hardening steel (BH180), 7123 grade interstitial free steel (IF7123) and 304 grade austenitic stainless steel (AISI304L) with each other was investigated. In the joining process, electrode pressure and weld current were kept constant and six different weld time were chosen. Microstructure, microhardness, tensile-shear properties and fracture types of resistance spot welded joints were examined. In order to characterize the metallurgical structure of the welded joint, the microstructural profile was developed, and the relationship between mechanical properties and microstructure was determined. The change of weld time, nugget diameter, the HAZ (heat affected zone) width and the electrode immersion depth were also investigated. Welded joints were examined by SEM (scanning electron microscopy) images of fracture surface. As a result of the experiment, it was determined that with increasing weld time, tensile shear load bearing capacity (TLBC) increased with weld time up to 25 cycle and two types of tearing occurred. It was also determined that while the failure occurred from IF side at the BH180+IF7123 joint, it occurred from the BH180 side at the BH180+AISI304L joint.  相似文献   

18.
Friction stir lap welding (FSLW) experiments have been conducted to study the effects of tool positioning on microstructures formed in the Al-to-steel interface region and on joint strength, defined as maximum applied force over the width (F m/w s) of the test sample, of the welds. Various pin positioning and speed conditions were used in the FSLW experiments followed by microstructure examination on the interface regions and tensile-shear testing on the welds, including an examination on crack propagation in mixed stir zone. It was found that when the pin was close to the bottom steel piece, Al-to-steel reaction occurred resulting in intermetallic outbursts formed along the interface. This represents the case of incomplete metallurgical joint. When the pin was lowered to just reach the steel, a thin and continued interface intermetallic layer formed. Evidences and consideration on growth kinetics have suggested that the layer could only remain thin (≤2.5 μm) during FSLW. This layer could bear a high load during tensile-shear testing and the adjacent aluminium deformed and fractured instead. The resulting F m/w s was high. When the pin penetrated to steel, F m/w s reduced due to brittle fracture being dominant inside mixed stir zone. Evidences have shown that the amount of penetration and speed condition during FSLW do not have large effects on F m/w s.  相似文献   

19.
Lap joint friction stir welding (FSW) between dissimilar 5052-H112 (1 mm) and 6061-T6 (2 mm) Al alloys with different thickness was carried out with various tool rotation speeds and welding speeds according to the fixed location of each material on bottom or top sheet. Interface morphology was characterized by pull-up or pull-down from initial joint line. Amount of vertical material transports increased and thickness of 5052 resultantly lessened with increasing tool rotation and decreasing welding speed, which were the conditions of the weak bond. Higher stress concentration on the interface pull-up region, the penetration of unbonded region into the weld zone and the lessened thickness of 5052 Al part might be the reasons for lower fracture load. Higher fracture load was acquired at the lower tool rotation speed and higher welding speed when a thicker 6061 was fixed at retreating side on top sheet. Interface morphology was the most important factor determining the mechanical strength of lap FSW joints and can be manageable using FSW parameters.  相似文献   

20.
为研究电容储能缝焊工艺对304不锈钢接头性能的影响规律,对0.5 mm厚304不锈钢板进行了缝焊工艺实验,通过接头拉剪力检测和金相显微组织观察,对比了不同焊接速度、充电电容和放电频率下的缝焊接头组织特点,并分析了各工艺参数对接头拉剪力、熔核宽度、焊缝重叠量和焊透率的影响.结果表明:储能焊焊缝中心晶粒细小,熔合区为柱状晶,重叠部位晶粒粗大,接头组织呈现不均匀性,随着充电电容的增大晶粒变得更细密,组织不均匀程度显著降低,焊接速度和放电频率增大导致晶粒组织粗化并出现缩孔缺陷,提高电极压力可克服缩孔并使组织趋向均匀;充电电容对接头拉剪力的影响较小,焊接速度、充电电压、放电频率和电极压力调到一个合适值后,继续增大参数值对接头拉剪力影响很小;焊接速度的增大引起焊缝熔核宽度和重叠量急剧下降,充电电压增大引起焊缝焊透率下降过多,导致飞溅、过烧、毛刺等焊接缺陷的产生.因此,304不锈钢储能缝焊应采用低的焊接速度、较小的充电电压和较高的电极压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号