首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twin-screw extrusion was applied to prepare the carbon nanotubes/polylactic acid (CNT/PLA) nanocomposites. Five different extruded plates were produced under variation of CNT concentrations. The internal microstructures were also observed by optical microscope to examine the distribution and dispersion of CNT in the PLA. Besides, the crystallinity of the CNT/PLA nanocomposites was investigated by differential scanning calorimetry (DSC) and density method. The effects of the CNT concentrations on the mechanical and electrical properties of the nanocomposites were investigated. Scanning electron microscope (SEM) was performed to observe the CNT dispersion in the nano-scale. These results suggested that the crystallinity was increased with the increase of CNT concentrations, demonstrating that CNT played a role as a nucleating agent in PLA. Moreover, the mechanical and electrical properties of PLA have been improved by a proper incorporation of CNTs due to a good distribution and dispersion of the CNTs.  相似文献   

2.
For the first time the polyetheretherketone (PEEK)-hydroxyapatite (HA) nanocomposite materials were successfully prepared, and their microstructure and mechanical properties, such as tensile strength, load-displacement and Young's modulus, were examined. The specimens laminated by the PEEK-HA composite layers with 5 vol.% and 15 vol.% HA were also successfully made, which gave a promising mechanical strength and a high HA content on the specimen surface. This novel approach should be of significance in manufacturing PEEK-HA biomaterials with both satisfactory mechanical properties and high bioactivity.  相似文献   

3.
A multi-performance MWCNT-reinforced chitosan nanocomposite was fabricated by two methods: a freeze-drying process associated with the sublimation and compression (SAC) method; and the casting-evaporation (CE) method. We obtained ordered and multilayered structures with limited porosity, and well-dispersed MWCNT structures of the chitosan nanocomposite, especially with the SAC method. In the case of the nanocomposite films prepared by the CE method, the mechanical strength and elongation were significantly increased by up to about 40% compared with the pure chitosan films. On the other hand, the ordered and porous multilayered pure chitosan films prepared by the SAC method showed significantly lower tensile strength and elongation compared to the pure solid chitosan films. However, the relative enhancement of the mechanical properties of multilayered MWCNT/chitosan nanocomposites with porosity was higher, especially in terms of the elongation, which showed a twofold improvement in strain. The relaxed bond, which could be a relatively strong hydrogen bond, between the functional groups in the chitosan chains and the functionalized surface of the MWCNTs might be stretched under stress, thereby improving the ductility of the multilayered nanocomposite films. In addition, the viscoplastic behavior of the films by the CE method could become more active with increasing strain rate. Interestingly, ordered and porous pure chitosan films did not reveal the viscoplastic behavior; it rather presented strain softening and viscoelastic characteristics. However, the interaction between the chitosan chains and the surface-modified MWCNTs could regenerate viscoplasticity of the chitosan films.  相似文献   

4.
Durian skin waste generated by durian fruit or Durio zibethinus Murray show potential as a new reinforcement based-natural fibre. Similar to other lignocellulosic fibre, durian skin fibre (DSF) is capable in reinforcing polylactic acid (PLA) through extrusion and injection moulding processes for various applications. In current study, the effects of fibre content and pre-treatment using 4% sodium hydroxide (NaOH) on DSF were investigated on impact and thermal properties of PLA biocomposites. Treated DSF significantly enhanced the properties of PLA biocomposites as compared to untreated biocomposite. PLA can be replaced by 30 wt% DSF for similar impact performance. Thermogravimetry analysis (TGA) demonstrated that pre-treated DSF improved the thermal stability of PLA biocomposite. Differential scanning calorimetry (DSC) showed the presence of pre-treated DSF minimally enhanced the glass transition temperature (Tg), crystallization temperature (Tc) and melting temperature (Tm) relative to untreated DSF which suggests on better reinforcement with NaOH pre-treatment.  相似文献   

5.
This paper focuses on the synthesis and testing of a novel bio-based composite structure in which banana fibres was infused with resin made from banana sap. The mechanical, thermal, morphological and biodegradation properties of the bio-composite were characterized and it was found that the material was suitable for general non-functional components. Mechanical tests indicated 15% increase in tensile strength, 12% improvement in tensile modulus and a 25% improvement in flexural modulus when compared to structures produced without banana sap. At elevated temperatures a decrease in the moduli was observed. The thermal stability of the biocomposite composite improved and this corresponded with an increase in the glass transition temperature. Morphological studies using scanning electron microscopy revealed improved compatibility between the fibre and banana sap matrix. This resulted in improved dynamic modulus values and low damping values. Finally, degradation tests revealed increased microbial activity on the banana sap composite. This was indicative of improved biodegradation rates.  相似文献   

6.
In this work, the compressive mechanical properties, thermal stability and morphology of cellulose fiber-reinforced phenolic foams were studied. The cellulose fiber-reinforced phenolic foam showed the greatest compressive mechanical properties by incorporating 2 wt.% of the reinforcement. The compressive modulus and strength of 2 wt.% cellulose fiber-reinforced phenolic foam were increased by 21% and 18%, respectively, relative to the unreinforced material. The addition of the cellulose fibers to the phenolic foam slightly decreased the thermal stability of the material. The study on the morphology of the cellulose-reinforced phenolic foams via Scanning electron microscopy (SEM) indicated a strong bonding between the fibers and phenolic matrix. In addition, the incorporation of the cellulose fibers into the foam resulted in a decreased cell size and increased cell density of the material. The incorporation of 2 wt.% of cellulose fibers into the phenolic foam led to obtain the material with the best features.  相似文献   

7.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

8.
The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9 GPa to 3.6 GPa and from 58 MPa to 71 MPa, respectively, for nanocomposites with 5 wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70 °C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70 °C to 76 °C for composites with 5 wt.% CNF.  相似文献   

9.
The mechanical, thermal and electrical properties of modified AlN/polyetherimide (PEI) composites were investigated. It revealed that the surface of AlN modified by silane could effectively increase the adhesion with matrix, which was beneficial for AlN to reinforce the polyetherimide matrix. After silane modification, the AlN showed good dispersion and wetibility in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The tensile strength, modulus, electrical and thermal stability were improved with the increasing of AlN content. The tensile strength of AlN/PEI composites increased by 27% when 12.6 vol.% AlN was added to neat polyetherimide. The thermal conductivity of the 57.4 vol.% AlN/PEI composites increased three times compared with neat polyetherimide. Test results indicate that the silane grafted AlN incorporated into the polyetehetimide matrix effectively enhance the thermal stability, thermal conductivity and mechanical properties of the polyetherimide composites.  相似文献   

10.
Triacetate citrate plasticized poly lactic acid and its nanocomposites based on cellulose nanocrystals (CNC) and chitin nanocrystals (ChNC) were prepared using a twin-screw extruder. The materials were compression molded to films using two different cooling rates. The cooling rates and the addition of nanocrystals (1 wt%) had an impact on the crystallinity as well as the optical, thermal and mechanical properties of the films. The fast cooling resulted in more amorphous materials, increased transparency and elongation to break, (approx. 300%) when compared with slow cooling. Chitin nanocomposites were more transparent than cellulose nanocomposites; however, microscopy study showed presence of agglomerations in both materials. The mechanical properties of the plasticized PLA were improved with the addition of a small amount of nanocrystals resulting in PLA nanocomposites, which will be further evaluated for film blowing and thus packaging applications.  相似文献   

11.
This paper reported the effects of increasing Hibiscus cannabinus fiber (also known as kenaf fiber) loading level on properties of electron beam irradiated polylactic acid/low density polyethylene (PLA/LDPE). PLA and LDPE were compounded with 5–20 parts per hundred resins (phr) of kenaf respectively to enhance mechanical properties. The compounded kenaf added PLA/LDPE samples were electron beam irradiated from 15 to 60 kGy. The physical properties of kenaf added PLA/LDPE samples were characterized using gel content, X-Ray diffraction and scanning electron microscopy analysis. The results showed that the increasing of irradiation dosages in PLA/LDPE have gradually increased the gel content and tensile strength due to the formation of crosslinking networks in polymer matrix. However, the higher loading level of kenaf and irradiation dosages could decrease the elongation at break of PLA/LDPE samples. This is due to the restriction of polymer chains mobility as resulted by the poor interfacial adhesion between polymer matrix and kenaf particles as well as the formation of crosslinking networks in polymer matrix limits the sliding of polymer chains. Meanwhile, the increasing of kenaf loading level also has gradually increased the crystallinity of PLA/LDPE matrix. It is concluded that the electron beam irradiation dosages and amount of kenaf fiber in PLA/LDPE matrix should be kept at maximum 45 kGy and 15 phr, respectively for better combination to enhance the properties of the composites.  相似文献   

12.
Y.S. Zou  Y.F. Wu  C. Sun 《Vacuum》2009,83(11):1406-1629
The nitrogen incorporated diamond-like carbon films were deposited on Si (100) substrates by arc ion plating (AIP) under different N2 content in the gas mixture of Ar and N2. The influence of N2 content on the film microstructure and mechanical properties was studied by atomic force microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and nanoindentation. It was found that the hardness (H), elastic modulus (E), elastic recovery (R) and plastic resistance parameter (H/E) decrease with increasing the nitrogen content. The decrease of mechanical properties of DLC films resulted from nitrogen incorporation was associated with total sp3 carbon bond content and N-sp3C bond content. The structural modification as well as mechanical properties of the annealed nitrogen incorporated diamond-like carbon films was investigated as a function of annealing temperature. Raman spectra indicate that the ID/IG ratio starts to increase and G peak position shifts upward at the annealing temperature over 500 °C. The hardness and elastic modulus of thermally annealed nitrogen incorporated DLC films decreased slightly at lower annealing temperature and then significantly decreased at higher annealing temperature. The strong covalent bonding between C and N atoms is expected to be effective on their thermal stability enhancement.  相似文献   

13.
Cellulose nanocrystal (CNC) reinforced poly(vinyl alcohol) (PVA) hydrogels with a water content of ∼92% were successfully prepared with glutaraldehyde (GA) as a cross-linker. The effects of the CNC content on the thermal stability, swelling ratio and mechanical and viscoelastic properties of the cross-linked hydrogels were investigated. The compressive strength at 60% strain for the hydrogels with 1 wt% CNCs increased by 303%, from 17.5 kPa to 53 kPa. The creep results showed that the addition of CNCs decreased the creep elasticity due to molecular chain restriction. The almost complete strain recovery (∼97%) after fixed load removal for 15 min was observed from the hydrogels with CNCs, compared with 92% strain recovery of the neat cross-linked PVA hydrogels. The incorporation of CNCs did not affect the swelling ratio and thermal stability of the hydrogels. These results suggest the cross-linked CNC-PVA hydrogels have potential for use in biomedical and tissue engineering applications.  相似文献   

14.
Basalt fiber (BF) filled high density polyethylene (HDPE) and co-extruded wood plastic composites (WPCs) with BF/HDPE composite shell were successfully prepared and their mechanical, morphological and thermal properties characterized. The BFs had an average diameter of 7 μm with an organic surfactant surface coating, which was thermally decomposed at about 210 °C. Incorporating BFs into HDPE matrix substantially enhanced flexural, tensile and dynamic modulus without causing a noticeable decrease in the tensile and impact strength of the composites. Micromechanical modeling of tensile properties for the BF/HDPE composites showed a good fit of the selected models to the experimental data. Compared to neat HDPE, BF/HDPE composites had reduced linear coefficient of thermal expansion (LCTE) values. The use of the pure HDPE and BF/HDPE layers over a WPC core greatly improved impact strength of core–shell structured composites. However, the relatively less-stiff HDPE shell with large LCTE values decreased the overall composite modulus and thermal stability. Both flexural and thermal expansion properties were enhanced with BF reinforced HDPE shells, leading to well-balanced properties of core–shell structured material. Cone calorimetry analysis indicated that flammability performance of core–shell structured composites was improved as the BF content increased in the shell layer.  相似文献   

15.
The present research carried out to stabilize nano-ZrO2 on the wool fabric using citric acid (CA) as a crosslinking agent and sodium hypophosphite (SHP) as a catalyst under UV irradiation. The influence of the amount of nano-ZrO2 on the performance of wool fiber was investigated by the use of Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscope (EDX) and reflectance spectrophotometer (RS). The possible interactions between nano-ZrO2 particles, cross-linking agent and wool free radicals were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nano-ZrO2 enhances the thermal stability of wool. Photo-catalytic activities of the coated wool were evaluated through degradation of methylene blue (MB) under UV irradiation.  相似文献   

16.
The functionalized multi-walled carbon nanotubes (MWNTs) with amino groups were prepared after such steps as oxidation, the addition of carboxyalkyl radicals, acylation and amidation. Besides oxidated-MWNTs/epoxy nanocomposites, amino-functionalized MWNTs/epoxy nanocomposites, in which MWNTs with amino groups acted as a curing agent and covalently attached into the epoxy matrix, were fabricated. Subsequently, the effects of MWNT content on the mechanical and thermal properties for the two systems were investigated. It is found that both the tensile strength and impact strength enhance with the increase of MWNT addition, and the most significant improvement of the tensile strength (+51%) and especially impact strength (+93%) is obtained with amine-treated MWNTs at an 1.5 wt.% content. Moreover, the thermal stability of the nanocomposites also distinctly improves. The improvement of the properties of the amine-treated MWNTs system is more remarkable than those of o-MWNTs system. The reasons for these changes were discussed.  相似文献   

17.
In this study, we investigated the mechanical and thermal properties of composites based on miscanthus fibres and poly lactic acid or polypropylene matrices. The treatment of fibres by corona discharge which results in a surface oxidation and an etching effect as shown by X-ray photoelectron spectroscopy and scanning electron microscopy, leads to an improvement of the interfacial compatibility between matrix and fillers. Hence the homogeneity of materials (checked by X-ray tomography and fractographic evaluation) is better, the mechanical properties measured by classical tensile tests are improved (Young moduli increase around 10-20%). Dynamic mechanical analysis performed on samples leads to similar conclusions (higher modules and slight increase of glass transition temperature hence restricted molecular movement). The thermal stability of composites was investigated by thermogravimetric analysis. While the incorporation of raw fibres leads to a slight decrease of decomposition temperature, it is systematically increased as soon as fillers have been treated.  相似文献   

18.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

19.
The present research work demonstrated the reinforcing effect of expanded graphite (EG) and modified EG (MEG) with and without carbon black (CB) on the physical, mechanical and thermo-mechanical properties of emulsion polymerized styrene butadiene rubber (SBR) vulcanizates. In separate batches, EG and MEG flakes with and without CB were incorporated into the SBR by melt blending. The microstructures of the nanocomposites were precisely characterized by wide angle X-ray diffraction (WAXD) analysis and high resolution transmission electron microscope (HR-TEM). EG and MEG filled SBR compounds showed improvement in the curing features, mechanical, thermal and dynamic mechanical properties than their respective controls.  相似文献   

20.
Mechanical and thermal properties were characterized for two AlN:BN:SiC composite ceramics produced from BN with different particle sizes. The ceramics were hot pressed at temperatures from 1950 to 2100 °C to 97% relative density. For both materials, the matrix (90:10 vol% SiC:AlN) had a grain size of 0.4 μm, and the BN grains (10 vol%) were crystallographically aligned. Microhardness values were between 20 and 22 GPa, while fracture toughness values were between 2.5 and 3.1 MPa m1/2. Other properties were found to be dependent on testing direction. Elastic moduli were between 260 and 300 GPa and strengths were 630 MPa for small particle BN additions. Thermal conductivity was calculated to be between 25 and 37 W/m K at room temperature and 17 and 25 W/m K at 900 °C. The low values compared to traditional SiC ceramics were attributed to AlN–SiC solid solution formation and sub-micron matrix grain sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号