首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of oxidation by ozone gas on the molecular structure, rheological and thermal properties of starch (corn, sago and tapioca) were investigated. Starch, in dry powder form, was exposed to ozone for 10 min at different ozone generation times (OGTs). Average molecular weight decreased in oxidized corn and sago starches but increased in oxidized tapioca starch. All oxidized starches exhibited non-Newtonian shear-thinning behaviour. Starch viscosity decreased drastically with increasing OGT. Young’s modulus for all oxidized corn and sago starch gels stored for 1 and 7 days at 4 °C increased significantly compared to unmodified starch. No differences were noted in gelatinization temperatures and gelatinization enthalpies of all oxidized starches compared to unmodified starch. Retrogradation enthalpy increased markedly in corn starch after 1 min OGT. These results show that the extent of starch oxidation varies among starches of different botanical origins under similar ozone treatment conditions.  相似文献   

2.
Waxy and normal corn starches with different moisture contents, 5.1-16.9% and 4.8-15.9%, respectively, were prepared and treated in methanol containing 0.36% HCl at 45 °C for 1 h. Recovery of all the treated starches was found to be above 90%. Peak viscosity, gelatinization temperature and enthalpy change of gelatinization of waxy and normal corn starches decreased after treatment and this decrement was found to be more in treated starches having lower initial moisture content. The weight-average degree of polymerization and chain length (CL) of waxy and normal corn starches decreased upon acid-methanol treatment. The decrement ratio of molecular weight of modified starches was found to be negatively correlated with the initial moisture content of the starches. The decrement ratio of normal corn starch was higher than waxy corn starch with similar moisture content of starch. The content and CL of long chain fraction of amylopectin for waxy corn starch slightly decreased after treatment, while no obvious trend was found among starches with different moisture contents. CL of amylose for acid-methanol-treated normal corn starch decreased and this change was found to be higher in starches with lower initial moisture contents. Results demonstrated that the initial moisture content of starch granules strongly influenced the functional properties and degradation of starch treated by acid in methanol.  相似文献   

3.
Olayide S. Lawal 《LWT》2011,44(3):771-778
Hydroxypropyl starch derivatives were prepared from pigeon pea starch (NPPS) which is an unconventional starch source. Functional parameters and characterization of both native and modified starches were carried out. The starch granules appeared oval or elliptical in shape with sizes ranging from 7 to 40 μm in width and 10 − 30 μm in length. Hydroxypropylation did not alter the shape of the starch granules in a pronounced way. Generally, the x-ray diffractograms of native pigeon pea starch showed the “A” pattern. However, slight reductions in the diffraction intensity of starches after modification were observed. At all temperatures studied (30-90 °C), swelling and solubility of hydroxypropylated starches were higher than the NPPS. Progressive increases in swelling capacity and solubility were observed as the molar substitution (MS) increased among the hydroxypropylated starches. Hydroxypropylation reduced starch paste turbidity on storage. Also, studies showed that syneresis reduced after hydroxypropylation. In addition, syneresis reduced as the MS of the hydroxypropyl starches increased. The results indicate that pasting temperature and peak temperature reduced after modification but peak viscosity increased in hydroxypropylated starch derivatives compared with the native starch. Setback reduced in hydroxypropylated starches compared with the native starch. Enthalpy of gelatinization and percentage retrogradation reduced after hydroxypropylation and progressive reductions were observed as the MS increased among the starch derivatives. Hydroxypropylation increased enzymatic digestibility.  相似文献   

4.
对天然玉米淀粉和五种化学改性玉米淀粉的糖化性质进行了比较。改性玉米淀粉包括下列五种,磷酸淀粉,交联磷酸淀粉,醋酸淀粉A,醋酸淀粉B和羟丙基淀粉。使用差热扫描量热计测定了糊化的热力学参数,同时用显微镜观察了糊化过程。研究表明,五种改性玉米淀粉的糊化热都比天然的玉米淀粉小,测量冷的淀粉糊的流动性质表明只有羟丙基玉米淀粉比天然玉米淀粉的帖度高。  相似文献   

5.
The effect of mild heat treatment (below gelatinization temperature) towards the susceptibility of granular starch to enzymatic hydrolysis was investigated. Tapioca and sweet potato starches were subjected to enzymatic hydrolysis with a mixture of fungal α-amylase and glucoamylase at 35 °C for 24 h. Starches were hydrolyzed in native (granular) state and after heat treatment below gelatinization temperature (60 °C for 30 min). The dextrose equivalent (DE) value of heat-treated starch increased significantly compared to native starch, i.e., 36–50% and 27–34% for tapioca and sweet potato starch, respectively. Scanning electron microscopy examination showed that enzymatic erosion occurred mainly at the surface of starch granules. Hydrolyzed heat-treated starch exhibited rougher surface and porous granules compared to native starch. X-ray analysis suggested that enzymatic erosion preferentially occurred in amorphous areas of the granules. The amylose content, swelling power and solubility showed insignificant increase for both starches. Evidently, heating treatment below gelatinization temperature was effective in enhancing the degree of hydrolysis of granular starch.  相似文献   

6.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

7.
Influence of prior acid treatment on acetylation of starch isolated from an Indian sorghum cultivar was investigated. The starch was acid thinned (AT) using 0.1, 0.5, and 1 M HCl for 1.5 h and then acetylated (Ac) with acetic anhydride (8% w/w). The acid thinning and subsequent acetylation appeared to reduce the percentage acetylation as indicated by degree of substitution. Ac‐AT starches exhibited significantly different physicochemical, thermal, pasting, and gel textural properties from those of AT and Ac starches. Starches after dual modification showed higher solubility, lower AM content, gelatinization temperatures, retrogradation, peak viscosity, and gel hardness than native starch. Enthalpy and range of gelatinization were observed to be higher in dual modified starches than native starch. However, no significant changes in granule morphology or crystalline pattern of Ac‐AT starches were observed compared with native starch.  相似文献   

8.
The effects of steeping starch (sago, corn, and potato), in 0.025 M of sodium hydroxide for 0, 15, and 30 days at 30 °C, on its granular structure and other physicochemical properties were investigated. Changes in the morphology of starch granules indicated that the alkaline solution affected the granular structure of the starch. Pasting studies showed that the peak viscosity, breakdown, and setback of sago and potato starch decreased significantly, whereas that of corn starch increased significantly, when steeping time was prolonged. Swelling power increased significantly for treated potato and corn starches, but it decreased for sago starch. The amylose content of all alkali-treated starches also decreased significantly after treatment. Onset and peak temperatures of gelatinization (as analyzed with a differential scanning calorimeter) increased significantly, but the enthalpy decreased, for both gelatinization and retrogradation. The results showed that the physicochemical properties of starch of various botanical origins were affected to variable degrees when it was treated with alkaline solution.  相似文献   

9.
J.A. Stahl  V.C. Bochi  L.C. Gutkoski 《LWT》2007,40(7):1206-1214
Physicochemical properties of pinhão (seeds of Paraná pine) starch phosphates were evaluated and compared to corn starch phosphates. The phosphorylation process used yielded starch phosphates with three different degrees of substitution (DS): low (0.015), medium (0.07) and high (?0.12). Medium and high DS starch phosphates had higher cold water binding capacity, swelling power, and paste clarity, but lower paste syneresis (at 5 °C and after freeze-thaw cycles) than native starches (P<0.05). Low, medium, and high DS corn starches had higher solubility than native starches (3.8-, 8-, and 6-fold higher; P<0.05), but the solubility of pinhão starch increased only in medium DS starch phosphates (3-fold higher; P<0.05). Low DS starch phosphates had viscosity curves similar to native starches. In contrast, medium and high DS starch pastes had peak viscosity at room temperature, reached the minimum viscosity when heated to 95 °C, and had low setback.  相似文献   

10.
We present for the first time the interactions of starch and cassia gum – a novel galactomannan recently approved for use in food processing. Viscoelastic, pasting and microstructural characterization of various starches (waxy; high amylose; normal; cross-linked waxy corn starch; potato starch) containing different levels of the cassia gum was carried out. Significant changes were observed in the morphology of granule remnants formed during gelatinization in the starch pastes prepared with and without the addition of cassia gum. The freeze-dried starch–cassia gum pastes presented a shrunken and tight arrangement of the starch granule remnants, when studied by scanning electron microscopy. A significant reduction in the granule remnant size was also calculated using laser diffraction particle size analysis. The extent of interaction with cassia gum differed significantly among the various starch types. All the unmodified corn starches recorded an increase in peak viscosity at all levels of the cassia gum addition. An increase in the final viscosity of these starches was also observed by the addition of cassia gum, with high amylose and normal corn starch showing the maximum. Similarly, the extent of breakdown and setback viscosity also differed among the different starch types. Ranges of dynamic rheological measurements (temperature, time and frequency sweeps) were performed within the viscoelastic zones. Rheological parameters, such as storage modulus (G′), loss modulus (G″) and the gelatinization temperature (Tgel), of the corn starches during the heating cycle were observed to increase, when cassia gum was present at lower levels. The starch–gum systems also exhibited higher tan δ values during both the heating and the cooling cycles, indicating the dominance of the viscous modulus. The G′ and G″ of all the corn starch gels containing cassia gum showed higher values throughout the frequency sweep range. However, the increase in G′ and G″ of different starches was not always consistent with the increase in cassia gum levels. The changes in rheological behaviour during storage of the starch gels, aged on the plate of the rheometer and then studied through time sweeps at 5 °C and frequency sweeps at 25 °C, suggested that the starch gels containing cassia gum had less pronounced changes in the rheological parameters than had their control counterparts.  相似文献   

11.
The effects of gelatinisation on slowly digestible (SDS) and resistant starch (RS) of native and modified canna starches were investigated. Starch slurries (10% w/w) were gelatinised at 100 °C for 5, 10, 20 and 40 min using a rapid visco analyzer (RVA). Significant change in the degree of gelatinisation (DG) values of all starch samples was observed during the initial 10 min of gelatinisation; after that the DG values increased gradually with gelatinisation time. The RS contents in all gelatinised starches decreased with increasing gelatinisation time, while the SDS values fluctuated. Chemical modification affected DG values as well as RS/SDS contents. The RS contents in 10% (w/w) acetylated, hydroxypropylated, octenyl succinylated and cross-linked canna starches gelatinised at 100 °C for 40 min were 26.6%, 32.0%, 45.3% and 19.8%, respectively, which were higher than that of the native starch (12.4%). Canna starch modified by crosslinking had the highest SDS content when gelatinised for 20-40 min. Modification of canna starch by heat-moisture treatment resulted in a lower content of RS for all treated samples. However, the Vt-HMT25 (canna starch containing moisture content of 25% during heat treatment) when gelatinised for 5-20 min contained a higher amount of SDS, compared to unmodified starch. The most effective modification method for RS and SDS formation was octenyl succinylation, where the sum of RS and SDS approached that of Novelose260.  相似文献   

12.
To investigate the effect of UHP treatment on the cross-linking reaction, normal corn starch was subjected to UHP-assisted reaction with a single addition level of POCl3, at varied pressure levels ranging from 0.1 to 400 MPa. Swelling power, gelatinization, and pasting properties were assessed for all native and cross-linked starches. UHP-assisted reaction achieved a 12.5% level of conventional reaction time. UHP-assisted POCl3 starch derivatives, reacted at 100–400 MPa, exhibited reduced swelling powers and gelatinization properties relative to that at 0.1 MPa, though both attributes did not possess any tendency depending on pressure levels. UHP-assisted POCl3 reaction generated pasting viscosity profiles similar to those observed for conventional cross-linked starches. Pasting viscosity profiles were significantly different among various UHP treatments, though no trends were present. At 400 MPa, the UHP-assisted POCl3 starch derivative revealed pasting viscosity profiles most similar to those of the conventional POCl3 starch derivative.  相似文献   

13.
Starches were isolated from cassava (Manihot esculenta) and potato (Solanum tuberosum) tubers. They were further modified by acetylation. The physicochemical, functional and thermal properties of native and modified starches, prepared using acetic anhydride at different times (10 and 20 min) were compared. Potato starch (Sipiera/20) showed higher acetyl percentage and degree of substitution values than cassava (2425/20) starch when acetylated for 20 min. Proximate analysis revealed that the acetylated starches retained more moisture than the native ones. Above 75 °C, acetylation improved the water binding capacity of the native cassava starch; the same trend was observed for potato starch from 60 to 90 °C after acetylation. The X-ray powder diffraction patterns derived from acetylated potato starches were similar to its native form, which was expected as B-type pattern; the same trend was observed for modified cassava starch. However the modified starches showed increased crystalline index.  相似文献   

14.
Cassava starch was cross‐linked with epichlorohydrin (EPI) at 45°C for 2 h in three different media which include water, water in the presence of a phase transfer catalyst (PTC) and N,N‐dimethylformamide (DMF). The products were characterized by determining their physicochemical, thermal and retrogradation properties. In aqueous medium, the use of a PTC, tetrabutylammonium bromide (TBAB) produced derivatives with higher degree of cross‐linking than those prepared without the use of the catalyst. The degree of cross‐linking was found to be higher using the same concentration of EPI when the reaction was carried out in DMF. At low levels of cross‐linking, the peak viscosity of the cross‐linked starches increased in comparison to that of the native starch. With increasing degree of cross‐linking, the peak viscosity showed a significant reduction. The swelling volume, solubility and light transmittance of the starch pastes were lower for the modified starches. The cross‐linked starches showed slightly reduced values for the gelatinization temperatures, Tonset, Tpeak and Tend. The enthalpy of gelatinization of the modified starches increased with increase in the degree of cross‐linking. The modified starches exhibited higher water‐binding capacities (WBC) than the native starch; but with increase in the degree of cross‐linking, there was a gradual decrease in WBC. The in vitro alpha amylase digestibility of the modified starches decreased gradually with increase in the level of cross‐linking.  相似文献   

15.
Effects of deproteinization on the degree of oxidation of ozonated starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs: 1, 3, 5, 10 min), and then native starches (NS) and deproteinized starches (DPS) were analyzed for protein content. Deproteinization caused a significant reduction in protein content for corn (∼21%) and sago (∼16%) starches relative to NS. Carbonyl and carboxyl contents increased significantly in all ozonated deproteinized starches (ODPS) with increasing OGT. Carbonyl and carboxyl contents of ODPS ranged from 0.03 to 0.13% and 0.14 to 0.28%, respectively. The carboxyl content for all ODPS was significantly higher than that of ozonated native starches (ONS). A Rapid Visco Analyser was used to analyze pasting properties of all starches. Deproteinization increased the pasting viscosities of corn and sago starches compared to their native forms. Generally, pasting viscosity of all ODPS decreased drastically as OGT increased. At the highest oxidation level (10 min OGT), all ODPS exhibited the lowest pasting viscosities compared to their ozonated native form, except for peak viscosity, breakdown viscosity, and setback viscosity for ozonated deproteinized corn starch. In conclusion, deproteinization as a pretreatment prior to starch ozonation successfully increased the degree of oxidation in the three types of starch studied. However, the extent of starch oxidation varied among the different starches, possibly due to differences in rates of degradation on amorphous and crystalline lamellae and in rates of oxidation of carbonyl and carboxyl groups.  相似文献   

16.
Starches extracted from rice flour from broken kernels of three rice cultivars (PUSA-44, PR-106 and PR-114) have been selected for modification studies due to their varied amylose content. Model solutions with different types and concentrations of modifying agents were prepared for comparative study of effect of amylose variation among the varieties and also individual and combined effect of modifying agents used. There was an increase in hot paste viscosity at 90 °C in modified starches whereas, cold paste viscosity decreased upon modification. A greater effect was observed with in dual modification of starches. The total set back was significantly lower in modified starches indicating the decreased retro-gradation of starch gels upon modification. The DSC results showed decreases in ΔH, To, Tp, and Tc, indicating that hydroxypropylation cross-linking and acetylation affect the structure of starches granules, requiring less heat for gelatinization. Pasting and thermal properties of PUSA-44 were significantly different from those of PR-106 and PR-114, probably due to relative higher amylose contents in the former. As observed in this study, bi-functional modifying agents can reduce the extent of cross-linking. Acetylation modified the morphology of the starch. However, hydroxypropylation cross-linking and dual modification retained the original structure with little modification.  相似文献   

17.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

18.
Standard maize (SMS), waxy maize (WMS), wheat (WTS) and potato (PTS) starches were hydrothermally treated by Instantaneous Controlled Pressure Drop (DIC) process at different pressure levels (1, 2 and 3 bar) corresponding to the temperatures of 100, 122 and 136 °C, respectively. The rheological properties and particle size of treated starches under various conditions were compared to the native ones. The results showed for all starches, except for WTS, a reduction of the consistency coefficient and the yield stress (τ0) with increased intensity of the hydrothermal treatment conditions. Furthermore, τ0 vanished for severe treatment conditions. The DIC treatment yielded an increased fluidity and a loss of the conservative modulus of the pastes, as a result of partial gelatinization of starch granules. The extent of the observed effect depended on the botanical origin. Wheat starch exhibited a different behaviour: the consistency coefficient and the conservative modulus being higher for DIC treated starch except for the most severe conditions.  相似文献   

19.
The effects of modification sequence on chemical structures and physicochemical properties of hydroxypropylated (HP) and crosslinked (XL) waxy maize starch were investigated. The physicochemical properties, including pasting, gelling, and thermal properties, were studied. The chemical structures of dual‐modified starches and their beta‐limit dextrins were characterized with high‐performance liquid chromatography. The HP‐XL starch had higher Brabender viscosity than did the XL‐HP starch at both pH 7 and 3; however, both showed similar gelling properties. Significantly higher onset and peak gelatinization temperatures, gelatinization enthalpy, and lower retrogradation were observed for the HP‐XL starch. The HP‐XL starch also exhibited significantly higher beta‐amylolysis limit and higher content of low molecular weight saccharides in its isoamylase‐debranched starch, suggesting its structure was more accessible to enzymatic attack than the XL‐HP starch. Structural analyses revealed different distribution patterns of modifying groups between the two modified starches. The results indicate that the modification sequence altered the susceptibility to enzymes, changed the locations of substitution, and modified the physicochemical properties of the HP and XL waxy maize starches.  相似文献   

20.
Normal corn, Hylon V and Hylon VII starches were acid-methanol-treated at 25 °C for 1–30 days in methanol containing 0.36% HCl, and then annealing at 50 °C for 72 h in excess water. The rapid digestible starch (RDS), slow digestible starch (SDS) and resistant starch (RS) contents of starch before and after treatments were determined. The molecular structure, thermal properties, double helix content and relative crystallinity of starch were observed for elucidating the impacts of acid-methanol treatment and annealing, as well as the molecular structure, on the enzymatic resistance of starch. Results showed that the weight-average degree of polymerization of acid-methanol-treated corn starches ranged from 884 × 103 to 404, 778 × 103 to 299 and 337 × 103 to 250 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Annealing increased the RS content of starch, and the increment of RS increased with decreasing molecular size of starch. Furthermore, the change in RS content after treatments depended on the content and weight-average chain length of amylose fraction of starch. The RS content of starch after treatments increased from 19.2 to 56.2%, 69.9 to 86.1%, and 73.1 to 89.1% for normal corn, Hylon V and Hylon VII starches, respectively. The gelatinization peak temperature and double helix content of starch increased after acid-methanol treatment or annealing. Results demonstrate that the degradation of starch, causing by acid-methanol treatment, enhances the mobility and realignment of starch chains in molecules during treatments and further increases the enzymatic resistance of starch granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号