首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effects of temperature and the in situ pH on the composition and morphology of corrosion product layers in the CO2 corrosion of X70 steel were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, respectively. The experiments were carried out in a range conditions including temperature 55–85 °C and pH 5.5–6.5 over a period of 72 h. At 55 °C, no corrosion product was formed on the steel surface at any pH conditions. By increasing the temperature to 65 °C, iron carbonate (FeCO3) phase was formed at all pH conditions with an apparently non-compact morphology. Raising the pH increased the compactness of the layer. At 75 and 85 °C, a compact layer was formed at all pH conditions, while the most compactness was seen at pH 6.5 for both of these temperatures. It was also observed that the thickness of FeCO3 layer increased with increasing temperature. Therefore, it could be concluded that the optimum conditions for producing a compact and thick layer of FeCO3 was obtained at temperature of 85 °C and pH 6.5.  相似文献   

2.
In this research, Ni–P and Ni–P/nano-SiC coatings were applied on the X70 steel substrate successfully without any surfactant. Then, CO2 corrosion in the presence of acetic acid (HAc) was investigated using electrochemical techniques. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques were used for surface analyses of the coatings. The electrochemical behavior of corrosion was investigated using polarization test and electrochemical impedance spectroscopy (EIS). XRD pattern of Ni–P/nano-SiC coating was very similar to that of Ni–P coating. EDS results demonstrated the presence of SiC particles in the coating. SEM images confirmed the presence of SiC nano-particles with almost uniform distribution in the coating. The corrosion current density was less in the Ni–P and Ni–P/nano-SiC coated samples than uncoated X70 steel. Ni–P/nano-SiC coated sample had the most corrosion resistance because of less effective metallic area available for corrosive media. The overall protection mechanism of Ni–P and Ni–P/nano-SiC coatings was achieved by formation of a layer of adsorbed hypophosphite anions (H2PO2).  相似文献   

3.
In this study, the effect of temperature of post-oxidation process on tribological and corrosion behavior of AISI 316 plasma nitrided stainless steel has been studied. Plasma nitriding was carried out at 450 °C for 5 h with gas mixture of N2/H2 = 1/3. The plasma nitrided samples were post-oxidized for 1 h with gas mixture of O2/H2 = 1/5 at different temperature of 400, 450 and 500 °C. The structural, tribological and corrosion properties were analyzed using XRD, SEM, microhardness testing, pin-on-disk tribotesting and electrochemical polarization. The results indicated that the nitride layer was composed of S-phase. The amount of S-phase decreased as the treatment temperature rose from 400 °C to 500 °C. In addition, it was found that oxidation treatment reduces wear resistance of plasma nitrided sample. It was demonstrated that the corrosion characteristics of the nitrided sample were further improved by post-oxidation treatment. The difference in corrosion resistance is mainly attributed to the thickness of the oxide top layer, which is governed by the post-oxidizing temperature.  相似文献   

4.
The effect of the extract of Punica granatum (PG) and their main constituents involve ellagic acid (EA) and tannic acid (TA), as mild steel corrosion inhibitor in 2 M HCl and 1 M H2SO4 solutions was investigated by weight loss measurements. The results obtained from the weight loss measurements show that the inhibition efficiency of TA even in high concentration is very low. Thus, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) investigations were used for different concentrations of PG and EA and best concentration of TA. Potentiodynamic polarization curves indicated that PG and EA behave as mixed-type inhibitors. EIS measurements show an increase of the transfer resistance with increasing inhibitor concentration. The temperature effect on the corrosion behavior of steel without and with the PG extract was studied. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm.  相似文献   

5.
J.L. Xu  F.P. Wang  L.C. Zhao 《Materials Letters》2008,62(25):4112-4114
Al2O3 coatings were prepared on NiTi alloy by micro-arc oxidation in an aluminate solution. Thin-film X-ray diffraction (TF-XRD) indicated that the coating consisted of only Al2O3 crystal phase. Energy dispersive X-ray spectrometer (EDS) showed that there was about 2.53 at.% Ni in the surface layer, which was greatly lower than that of NiTi substrate. Scanning electron microscopy (SEM) showed that the coating exhibited a typical porous surface and excellent adhesive interface between the coating and the substrate. Direct pull-off test showed that the coating had a mean coating-substrate bonding strength of 28 ± 2 MPa. The results of electrochemical impedance spectroscopy (EIS) study and potentiodynamic polarization test indicated that the corrosion resistance of the coated sample was increased by two orders of magnitude compared with uncoated sample.  相似文献   

6.
The aim of this study is to evaluate the electrochemical corrosion behavior of a Sn–Ag solder alloy in a 0.5 M NaCl solution at 25 °C as a function of microstructural characteristics. Different microstructure morphologies, which can be found in Sn–Ag solder joints and that are imposed by the local solidification cooling rate, are evaluated and correlated to the resulting scale of the dendritic matrix and the morphology of the Ag3Sn intermetallic compound. Cylindrical metallic molds at two different initial temperatures were employed permitting the effect of 0.15 °C/s and 0.02 °C/s cooling rates on the microstructure pattern to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical parameters. It was found that higher cooling rates during solidification are associated with fine dendritic arrays and a mixture of spheroids and fiber-like Ag3Sn particles which result in better corrosion resistance than coarse dendrite arrays associated with a mixture of fibers and plate-like Ag3Sn morphologies which result from very slow cooling rates.  相似文献   

7.
Newly developed low-temperature nitride synthesis route was used to introduce interstitial nitrogen into the passive layer of as-received and as-polished 316L stainless steel. The new thermochemical route is based on treating the stainless steel samples in potassium nitrate melt in an ultra pure nitrogen atmosphere at 450 °C. Electrochemical impedance spectroscopy (EIS) and dc polarization measurements have been used to evaluate the nitride layer performance in 3.5% NaCl solution. Results showed a marked increase in the corrosion resistance of nitrided stainless steel even after maintaining two weeks in NaCl solution. The effect of the treatment temperature was also studied. Data showed that the as-polished samples nitrided at 450 °C have the highest corrosion resistance. The polarization resistance (Rp) for the as-polished and as-received blank stainless steel samples was estimated by EIS were approximately 4.0 × 104 Ω cm2 and 2.0 × 104 Ω cm2, respectively. The Rp increased by a factor of 2.5–5 for the nitrided samples. Increasing the nitriding temperature from 450 to 600 °C affects negatively the corrosion resistance of stainless steel in NaCl solution. The Rp of the samples nitrided at 600 °C decreased sharply being almost 1/30 of the Rp of the samples nitrided at 450 °C. Linear polarization measurements showed that the lowest corrosion rates and highest polarization resistances obtained from the as-polished nitrided samples at 450 °C. It has been found from the potentiodynamic measurements that the Ecorr of the as-polished nitrided samples at 450 °C is nobler than that measured from the other groups. The surface morphology was analysed by optical microscope and SEM-EDS under different nitriding conditions.  相似文献   

8.
This paper compares the ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel carried out to improve the surface corrosion resistance. The gas composition for plasma nitriding was 85% N2–15% H2 and that for plasma nitrocarburizing was 85% N2–12% H2–3% CO2. Both treatments were performed for 5 h, for different process temperatures of 570 and 620 °C for ferritic and austenitic plasma treatment, respectively. Optical microscopy, X-ray diffraction and potentiodynamic polarization technique in 3.5% NaCl solution, were used to study the treated surfaces. The results of X-ray analysis revealed that with increasing the treatment temperature from 570 to 620 °C for both treatments, the amount of ε phase decreased and γ′ phase increased. Nitrocarburizing treatment resulted in formation of a more amount of ε phase with respect to nitriding treatment. However, the highest amount of ε phase was observed in the ferritic nitrocarburized sample at 570 °C. The sample nitrided at 620 °C exhibited the thickest layer. The potentiodynamic polarization results revealed that after plasma nitriding and nitrocarburizing at 570 °C, corrosion potential increased with respect to the untreated sample due to the noble nitride and carbonitride phases formed on the surface. After increasing the treatment temperature from 570 to 620 °C, corrosion potential decreased due to the less ε phase development in the compound layer and more porous compound layer formed at 620 °C with respect to the treated samples at 570 °C.  相似文献   

9.
Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br, Cl or SiO32−) on the electrochemical behavior of magnesium alloy in 0.1 M Na2C2O4 solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na2C2O4). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br or Cl, the corrosion rate is higher than the blank.  相似文献   

10.
The inhibitive effect of the ethyl acetate extract of Uncaria gambir on the corrosion of mild steel in 1 M HCl solution has been investigated by weight loss measurement as well as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The presence of this catechin-containing extract reduces remarkably the corrosion rate of mild steel in acidic solution. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 303–333 K. The results from this corrosion test clearly reveal that the extract behaves as a mixed type corrosion inhibitor with the highest inhibition at 1000 ppm. Surface analyses via scanning electron microscope (SEM) shows a significant improvement on the surface morphology of the mild steel plate. Linearity of Langmuir isotherm adsorptions indicated the monolayer formation of inhibitor on mild steel surface.  相似文献   

11.
Corrosion inhibition effect of rhodanine-N-acetic acid (R-NA) on mild steel (MS) corrosion in 0.1 M HCl solution was investigated. For this purpose, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) as well as hydrogen gas evolution (VH2t) and the change of open circuit potential as a function of immersion time (Eocp − t) were used. The MS surfaces exposed to 0.1 M HCl solution in the absence and presence of inhibitor were examined by scanning electron microscopy (SEM). The thermodynamic parameters of adsorption were calculated and discussed. In order to gain more information about the adsorption mechanism, the EIS technique was used to evaluate the potential of zero charge (PZC) and a mechanism of adsorption process was proposed. It was found that, R-NA is a good corrosion inhibitor for the MS corrosion in 0.1 M HCl solution. The inhibition efficiency increased with increasing inhibitor concentration and reached 98% at 1.0 × 10−2 M R-NA. The high inhibition efficiency was related to adsorption of R-NA on steel surface. Surface SEM images showed a good surface coverage of inhibitor on the metal surface.  相似文献   

12.
E. Liu  H.W. Kwek 《Thin solid films》2008,516(16):5201-5205
Diamond-like carbon (DLC) thin films used in this study were intended for their electrochemical properties. The DLC films were deposited by a filtered cathodic vacuum arc (FCVA) process on p-type silicon (100) substrates biased at different pulse voltages (0-2000 V). The chemical bonding structures of the DLC films were characterized with micro-Raman spectroscopy and the electrochemical properties were evaluated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The DLC films showed high impedance, high polarization resistance and high breakdown potential in a 0.5 M H2SO4 aqueous solution, which were attributed to the high sp3 content and uniformity of the films. The excellent chemical inertness of the DLC films made them promising corrosion resistant coating materials.  相似文献   

13.
The electrochemical syntheses of polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) were achieved on 3102 aluminum alloy (Al) from 0.1 M monomer (pyrrole:o-anisidine, 8:2) containing 0.4 M oxalic acid solution using the cyclic voltammetry technique. The synthesized films were characterized by FT-IR spectroscopy. The thermal stability of films was determined by thermogravimetric analysis (TGA) technique. Surface morphologies were characterized by scanning electron microscope (SEM) images. The potential of zero charge (pzc) of Al was determined using electrochemical impedance spectroscopy (EIS). The corrosion behavior of samples was investigated with open circuit potential (Eocp)–time, EIS, and anodic polarization techniques. It was found that copolymer coated Al provides better barrier property against of corrosion in 3.5% NaCl solution.  相似文献   

14.
Electrodeposited nickel was prepared from a sulphamate bath at different current densities ranging from 0.01 A cm− 2 to 0.1 A cm− 2. Based on the analysis of the microstructure, the corrosion behavior of the electrodeposited nickel in 3.5%NaCl solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). All the electrodeposits display active-passive-transpassive behavior in potentiodynamic polarization process. The electrodeposits with the best corrosion resistance are obtained at 0.05 A cm− 2. As for other electrodeposits, the corrosion potential and breakdown potential decrease with increasing current density used to prepare electrodeposits. However, the variation of both corrosion current density and passive current density is opposite to that of the corrosion potential. The changes in the charge-transfer resistance determined from the impedance spectra are consistent with the results determined from potentiodynamic measurements.  相似文献   

15.
The title compound 1-(4,5-dihydro-3-phenylpyridine-1-yl)-2-(1H-1,2,4-triazole-1-yl)ethyl ketone (DTE) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid solutions was investigated by means of weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscope (SEM). Results obtained revealed that DTE performed excellently as a corrosion inhibitor for mild steel in 1 M hydrochloric acid media and its efficiency attains more than 90.9% at 1.0 × 10− 3 M at 298 K. Polarization curves indicated that the inhibitor behave mainly as mixed-type inhibitor. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions. Adsorption of the inhibitor on the mild steel surface followed Langmuir adsorption isotherm. And the values of the free energy of adsorption ΔGads indicated that the adsorption of DTE molecule was a spontaneous process and was typical of chemisorption.  相似文献   

16.
The influence of potential on electrochemical behavior of Ti-6Al-7Nb alloy under simulated physiological conditions was investigated by electrochemical impedance spectroscopy (EIS). The experimental results were compared with those obtained by potentiodynamic polarization curves. All measurements were carried out in Hank's aerated solution at 25 degrees C, at pH 7.8 and at different potentials (corrosion potential, 0 mV(SCE), 1000 mV(SCE), and 2000 mV(SCE)). The EIS spectra exhibited a two-step or a two-time constant system, suggesting the formation of a two-layer oxide film on the metal surface. The high corrosion resistance, displayed by this alloy in electrochemical polarization tests, is due to the dense inner layer, while its osseointegration ability can be ascribed to the presence of the outer porous layer.  相似文献   

17.
The hot corrosion resistance of sprayed and atomized Fe–40 at.% Al, Fe40Al+0.1B and Fe40Al+0.1B+10Al2O3 intermetallic materials have been evaluated in NaVO3 at 625 and 700°C using polarization curves and linear polarization resistance measurements. Also, the results were supported by X-ray diffractometry and electron microscopy studies. The tests lasted 10 days. At 625°C, the Fe40Al+0.1B+10Al2O3 material exhibited the lowest corrosion rate, whereas the Fe40Al had the highest corrosion rate. At 700°C the three materials exhibited erratic behavior during the first 100 h, and after this all the intermetallics had the same corrosion rate. However, the corrosion rate was higher at 625 than at 700°C. The results are discussed in terms of an electrochemical mechanism, the establishment of an Al2O3 layer, which is more protective in the Al2O3-containing aluminide and seems to increase its protectiveness as the temperature increases from 625 to 700°C.  相似文献   

18.
The aim of this work is to investigate the corrosion resistance and biocompatibility of three kinds of Fe based bulk metallic glasses (BMGs), Fe41Co7Cr15Mo14C15B6Y2 (BMG1), (Fe44Cr5Co5Mo13Mn11C16B6)98Y2 (BMG2), and Fe48Cr15Mo14C15B6Er2 (BMG3) by electrochemical measurements and indirect contact cytotoxicity assays, respectively. In comparison with 316 L SS biomedical steel, Fe based BMGs show better corrosion resistance in both simulated body fluids (Hank's solution and artificial saliva). The OCP curves show that the passive film on the Fe based BMG surfaces is quite stable, like 316 L SS. The corrosion current densities obtained from the anodic polarization curves from the lowest to highest are as follows: BMG3 < BMG1 < BMG2 < 316 L SS. The EIS analysis indicates that the Fe Based BMGs have larger polarization resistance value than that of 316 L SS except for BMG2 in artificial saliva. The pitting corrosion potentials of Fe based BMGs are much higher than that of the 316 L SS, resulting in very few ions releasing into the electrolytes while a significant amount of Ni and Fe ions release was found for 316 L SS under the same condition. The indirect cytotoxicity results suggest that all three Fe based BMG extracts have no cytotoxicity to L929 and NIH3T3 cells. All these results demonstrate that Fe based BMGs will open up a new path for the biomedical applications, especially in dental implantology.  相似文献   

19.
FePt (50 nm) and [FePt(xnm)/AlN(1, 2, 3 nm)]10 (x=2, 3 nm) films were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of AlN layer thickness on structure and magnetic properties of FePt/AlN multilayers. Superlattice (0 0 1) peaks can be found in the grazing incidence X-ray diffraction of FePt and [FePt (3 nm)/AlN (1, 2, 3 nm)]10 films, which indicate that the FCC phase has been partially transformed into ordered L10 phase. Compared with the single layer FePt film, superlattice (0 0 1) peaks of FePt/AlN multilayers are weak and wide, which indicates that the introducing of AlN hinders the growth of FePt particle, and also shows the introducing of AlN is not beneficial to the transformation from FCC phase to L10 phase. In addition, the low-angle XRD spectra show the layered structure of FePt/AlN has been broken after annealing. The coercivities, particle size, intergrain exchange interactions of FePt/AlN films are decreased with increasing AlN layer thickness.  相似文献   

20.
In this study the corrosion resistance of chromium and nickel single layers and multilayer coatings of nanolayered Cr/Ni, electrodeposited from Cr(III)-Ni(II) baths on low carbon steel substrates, has been studied. The coatings were electrodeposited from a bath using pulse current and modulated agitation. The total thickness of single layer and multilayer coatings was fixed at 5 μm and multilayer coatings with different modulation wavelengths and Cr to Ni thickness ratio were electrodeposited. Corrosion behavior of coatings was then studied by using potentiodynamic polarization test and electrochemical impedance spectroscopy in 0.1 M H2SO4. The results showed that Cr and Ni single layers had low corrosion resistance due to the presence of surface cracks and pores, respectively. On the other hand, optimized 20 nm Cr/50 nm Ni multilayer deposition significantly improved corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号