首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is now universally recognized that the mechanical, cracking and fracture, properties of Steel Fibre Reinforced Concrete (SFRC) are far superior to those of plain concrete. The use of SFRC contributes effectively to preserve the structural stability and structural integrity of concrete elements and improve their ductile behaviour.To optimize the performance of SFRC in structural members it is necessary to establish the mechanical properties very precisely. The best test methodology to evaluate the post-cracking and toughness properties of SFRC is the beam bending test. Design codes recommend one of two bending test configurations: the three-point or the four-point bending test. The results obtained from these two test configurations are not identical.The overall focus of this paper is to evaluate the contributions of fibres to the post-cracking and fracture behaviour of concrete as determined by the two different standard test procedures. To achieve these aims plain and fibre concrete specimens were tested. All the test specimens were extensively instrumented to establish the strength properties, crack tip and crack mouth opening displacement, post-cracking and fracture behaviour. The results of the two types of bending tests were then critically analysed and evaluated to identify the differing effects of the bending load configurations on material and structural behaviour.SFRC specimens subjected to four-point bending test showed higher stress values compared to those obtained from the three-point bending tests. The first crack strength values evaluated following the two standards are close with an improvement of 10% for the European standard.  相似文献   

2.
This contribution presents an effective and practical three dimensional (3D) numerical model to predict the behaviour of concrete matrix reinforced with sliding metallic fibers. Considering fiber-reinforced concrete (FRC) as two-phase composite, constitutive behaviour laws of plain concrete and sliding metallic fibers were described first and then they were combined according to anisotropic damage theory to predict the mechanical behaviour of FRC. The behaviour law used for the plain concrete is based on damage and plasticity theories able to manage localized crack opening in 3D. The constitutive law of the action of sliding metallic fibers in the matrix is based on the effective stress carried by the fibers. This effective stress depends on a damage parameter related to on one hand, on the content and mechanical properties of fibers and on the other hand, on the fiber–matrix bond which itself depends on the localized crack opening. The proposed model for FRC is easy to implement in most of the finite element codes based on displacement formulation; it uses only measurable parameters like Young’s modulus, tensile and compressive strengths, fracture energies and strains at peak stress in tension and compression. A comparison between the experimental data and model results has been also provided in this paper.  相似文献   

3.
In the present study, Mode-I fracture tests of hybrid fiber reinforced concrete (HFRC) composite beams were conducted and the fracture properties and other post peak strength characteristics of the HFRC composites were evaluated and analyzed. The HFRC composite was produced using three types of fibers namely steel, Kevlar and polypropylene. A total of 27 HFRC composite beam specimens were cast and tested using the RILEM recommended three point bending test. The main variables were the fiber volume content and combinations of different fibers. The load versus crack mouth opening displacement (CMOD) curves of HFRC composite beams were obtained. Inverse analysis was carried out to determine the tensile strength and crack opening relationship. Analytical models based on comprehensive reinforcing index were developed for determining the influence of the fibers on fracture energy, flexural tensile strength, equivalent tensile strengths and residual tensile strengths of HFRC composites. Based on the experimental results and inverse analysis, a model for predicting the tensile softening diagram of HFRC composite mixes was also developed. The analytical models show conformity with the experimental results.  相似文献   

4.
X. X. Zhang  G. Ruiz  R. C. Yu 《Strain》2010,46(3):252-257
Abstract: This paper describes the main characteristics of a new drop‐weight impact machine that has been specifically designed for studying the dynamic mechanical behaviour of structural concrete samples. Such a type of equipment has been used to generate simple and measurable fracture processes under moderate‐to‐fast loading rates, contrary to blast chambers, which produce complicated crack patterns that are difficult to analyse. The machine consists of two main parts, the mechanical structure and the data acquisition system. The former is just a hammer, guided by two robust columns, which can impact the specimen with energy up to 7860 J. The latter consists of piezoelectric force sensors, accelerometers and optical fibre photoelectric sensors plus oscilloscopes and signal conditioners. The paper also presents the results of some preliminary tests on plain‐notched specimens that show the sensitivity of the work of fracture of a high‐strength concrete to the loading rate.  相似文献   

5.
Concrete is now universally recognized a construction material vital and essential for the regeneration and rehabilitation of the infrastructure of a country. The last few decades have now shown that high strength concrete, with a compressive strength of 100–120 MPa can be readily designed and manufactured. There have also been several advances made in the development of fiber reinforced concrete to control cracking and crack propagation in plain concrete, and to increase the overall ductility of the material. However, there are now many types of fibers with different material and geometric properties, and the exact fracture behavior of fiber reinforced concrete materials is not clearly understood. The overall aim of this paper is to establish the fracture properties and fracture behavior of concrete containing two widely used types of fibers, namely, steel (high modulus) and polypropylene (low modulus). The experimental investigation consisted of tests on cubes and notched prismatic specimens made from plain concrete and fiber concrete with 1% and 2% of steel or polypropylene fibers. The cube tests and the three point bending tests on notched specimens were carried out according to RILEM specifications, and extensive data on their compressive and flexural tensile behavior and fracture energy were recorded and analyzed. The results obtained from the tests are critically assessed, and it is shown that fibers contribute immensely to the structural integrity and structural stability of concrete elements and thereby improve their durable service life.  相似文献   

6.
In this work, we studied the influence of surface functionality of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of basalt fiber-reinforced composites. Acid and base values of the MWCNTs were determined by Boehm's titration technique. The surface properties of the MWCNTs were determined FT-IR, and XPS. The mechanical properties of the composites were assessed by measuring the interlaminar shear stress, fracture toughness, fracture energy, and impact strength. The chemical treatments led to a change of the surface characteristics of the MWCNTs and of the mechanical interfacial properties of MWCNTs/basalt fibers/epoxy composites. Especially the acid-treated MWCNTs/basalt fibers/epoxy composites had improved mechanical properties compared to the base-treated and non-treated MWCNTs/basalt fibers/epoxy composites. These results can probably be attributed to the improved interfacial bonding strength resulting from the improved dispersion and interfacial adhesion between the epoxy resin and the MWCNTs.  相似文献   

7.
A simple procedure for measuring the adhesive bond of cement-bonded materials is introduced and tested with an old-new concrete bond. Cubic or cylindrical specimens with a notch and the interface in their middle are split under stable crack growth conditions. The load is recorded as a function of the crack opening displacement. From this curve, the maximum load (notch tensile stress) and the fracture energy (G F) can be determined. The course of the curve characterizes the mechanical behaviour of the material bond in the crack opening mode and is an important basis for a numerical treatment of interface problems. Different pre-treatments of the old concrete surface have an important influence on the adhesion of the material compound. Good adhesive properties have been measured after sand-blast treatment and poorer properties after a dispersion emulsion treatment.  相似文献   

8.
This work presents an experimental study of thermal conductivity, compressive strength, first crack strength and ductility indices of recycled PET fiber-reinforced concrete (RPETFRC). We examine PET filaments industrially extruded from recycled PET bottle flakes with different mechanical properties and profiles. On considering a volumetric fiber dosage at 1%, we observe marked improvements in thermal resistance, mechanical strengths and ductility of RPETFRC, as compared to plain concrete. A comparative study with earlier literature results indicates that RPETFRC is also highly competitive over polypropylene-fiber-reinforced concrete in terms of compressive strength and fracture toughness.  相似文献   

9.
A parametric experimental study has been conducted to investigate the effect of polypropylene fibers on the fracture properties of cement treated crushed rock (CTCR), which is a new pavement composite material. By means of three-point bending method, the fracture toughness, fracture energy, the ultimate deflection in span center, critical crack mouth opening displacement, critical crack tip opening displacement, maximum crack mouth opening displacement and maximum crack tip opening displacement of the specimen of CTCR reinforced with polypropylene fibers were measured respectively. The test results indicate that the addition of polypropylene fibers is helpful to improve the fracture properties of CTCR. Polypropylene fibers have great improvement on the fracture parameters of CTCR. Besides, the fracture parameters increase gradually and the fracture relational curves are becoming plumper and plumper when the fiber volume fraction increases from 0% to 0.1%. Furthermore, the capability of polypropylene fiber to resist crack propagation of CTCR appears to be becoming stronger and stronger with the increase of fiber volume fraction with the fiber volume fraction not beyond 0.1%.  相似文献   

10.
Impact response of fiber-reinforced aerated concrete was investigated under a three-point bending configuration based on free-fall of an instrumented impact device. Two types of aerated concrete: plain autoclaved aerated concrete (AAC) and polymeric fiber-reinforced aerated concrete (FRAC) were tested. Comparisons were made in terms of stiffness, flexural strength, deformation capacity and energy absorption capacity. The effect of impact energy on the mechanical properties was investigated for various drop heights and different specimen sizes. It was observed that dynamic flexural strength under impact was more than 1.5 times higher than the static flexural strength. Both materials showed similar flexural load carrying capacity under impact, however, use of 0.5% volume fraction of polypropylene fibers resulted in more than three times higher flexural toughness. The performed instrumented impact test was found to be a good method for quantifying the impact resistance of cement-based materials such as aerated concrete masonry products.  相似文献   

11.
This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack tip opening displacement have been outlined. MARS model has been developed by establishing a relationship between a set of predicators and dependent variables. MARS is based on a divide and conquers strategy partitioning the training data sets into separate regions; each gets its own regression line. Four MARS models have been developed by using MATLAB software for training and prediction of fracture parameters and failure load.MARS has been trained with about 70% of the total 87 data sets and tested with about 30% of the total data sets. It is observed from the studies that the predicted values of Pmax, GF, KIC and CTODC are in good agreement with those of the experimental values.  相似文献   

12.
13.
This study investigated the flexural behaviour of plain concrete (PC) and coir fibre reinforced concrete (CFRC) beams externally strengthened by flax fabric reinforced epoxy polymer (FFRP) composites. PC and CFRC beams without and with FFRP (i.e. 2, 4 and 6 layers) reinforcement were tested under three- and four-point bending. The microstructures of coir fibre, coir/cement matrix, flax/epoxy matrix, and FFRP/concrete interfaces were analysed using scanning electronic microscope (SEM). Test results indicated that the peak load, flexural strength, deflection and fracture energy of both PC and CFRC specimens enhanced proportional to an increase of FFRP layers. Coir further increased load, strength and energy of the specimens remarkably. It was also found that the thickness and coir influenced the failure modes while the test method influenced the load and energy of the specimens remarkably. SEM studies showed effective bond at coir/cement, flax/epoxy and FFRP/concrete interfaces. Therefore, it concluded that natural FFRP composites can be used to repair or retrofit existing concrete structures.  相似文献   

14.
The growth and development of the fracture process zone in plain concrete has been investigated. A fictitious crack model based noniterative numerical scheme is developed to study the fracture characteristics of specimens of different sizes and geometries. Results from numerical studies on four different geometrically similar specimen sizes and two different specimen geometries are reported and discussed. The finite element program developed accommodates linear as well as nonlinear softening laws for the fracture process zone in concrete. It is observed that the process zone reaches a steady state length which is specimen size as well as specimen geometry dependent. As long as the process zone is allowed to develop to its steady state length, the energy absorbed in the process zone appears to be size and geometry independent. Results from tests on three-point bending specimens and compact tension specimens reported in the literature have been compared with the numerical solutions obtained in this investigation. Specimen size and geometry dependence generally observed in these fracture experiments have been duplicated. The numerical model also successfully reproduces many of the other experimentally observed characteristics in the fracture of plain concrete.  相似文献   

15.
F. H. Wittmann 《Sadhana》2002,27(4):413-423
The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. FRACTURE energy and strain softening of normal, high strength, and self-compacting concrete have been determined by means of the wedge splitting test. In applying the numerical model called “numerical concrete” crack formation in normal and high strength concrete is simulated. Characteristic differences of the fracture process can be outlined. Finally results obtained are applied to predict shrinkage cracking under different boundary conditions. Crack formation of high strength concrete has to be seriously controlled in order to achieve the necessary durability of concrete structures.  相似文献   

16.
This paper presents the effects of various amounts of steel fibers on the behaviour of eccentrically loaded high strength reinforced concrete columns. A total of 14 both short and slender square section steel fiber and plain high strength reinforced concrete column specimens were constructed and tested to investigate the addition of steel fibers on load–deflection behaviour, ultimate strength capacity, ductility and confinement. The complete nonlinear experimental stress–strain relationships of steel fiber and plain high strength concrete were obtained for different concrete strengths. In the study, a theoretical procedure considering the nonlinear behaviour of the materials is proposed for ultimate strength analysis and load–deflection behaviour of eccentrically loaded columns including slenderness effect. The complete experimental and theoretical biaxial load–deflection curves of the column specimens have been obtained and reported in the paper. The column specimens and some steel fiber columns available in the literature have been analysed for the ultimate strength capacities. Good agreement has been achieved between the analysis and the test results.  相似文献   

17.
18.
This paper presents fracture mechanics based Artificial Neural Network (ANN) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (Gf), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). Failure load of the beam (Pmax) is also predicated by using ANN model. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack tip opening displacement have been outlined. Back-propagation training technique has been employed for updating the weights of each layer based on the error in the network output. Levenberg- Marquardt algorithm has been used for feed-forward back-propagation. Four ANN models have been developed by using MATLAB software for training and prediction of fracture parameters and failure load. ANN has been trained with about 70% of the total 87 data sets and tested with about 30% of the total data sets. It is observed from the studies that the predicted values of Pmax, Gf, failure load, KIc and CTODc are in good agreement with those of the experimental values.  相似文献   

19.
The toughness of fiber-reinforced composites largely relies on crack bridging. More specifically, intact fibers left behind the tip of a propagating crack are progressively pulled out of the matrix, dissipating energy which translates into toughness. While short fibers are traditionally straight, recent work has showed that they can be shaped to increase the pullout strength, but not necessarily the energy to pullout. In this work we have modeled, fabricated and tested short fibers with tapered ends inspired from a high-performance natural material: nacre from mollusc shells. The main idea was to duplicate a key mechanism where a slight waviness of the inclusion can generate strain hardening and energy dissipation when the inclusion is pulled out. We have incorporated a similar feature to short fibers, in the form of tapered ends with well defined opening angles. We performed pullout tests on tapered steel fibers in epoxy matrices, which showed that the pullout of tapered fiber dissipates up to 27 times more energy than straight fibers. The experimental results also indicated the existence of an optimum taper angle to maximize work of pullout while preventing the brittle fracture of the matrix. An analytical model was developed to capture the pullout mechanism and the interaction between fiber and matrix. The analytical model can guide the design of tapered fibers by providing predictions on the influence of different parameters.  相似文献   

20.
Susceptibility to matrix driven failure is one of the major weaknesses of continuous-fiber composites. In this study, helical-ribbon carbon nanofibers (CNF) were dispersed in the matrix phase of a continuous carbon fiber-reinforced composite. Along with an unreinforced control, the resulting hierarchical composites were tested to failure in several modes of quasi-static testing designed to assess matrix-dominated mechanical properties and fracture characteristics. Results indicated CNF addition offered simultaneous increases in tensile stiffness, strength and toughness while also enhancing both compressive and flexural strengths. Short-beam strength testing resulted in no apparent improvement while the fracture energy required for the onset of mode I interlaminar delamination was enhanced by 35%. Extrinsic toughening mechanisms, e.g., intralaminar fiber bridging and trans-ply cracking, significantly affected steady-state crack propagation values. Scanning electron microscopy of delaminated fracture surfaces revealed improved primary fiber–matrix adhesion and indications of CNF-induced matrix toughening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号