首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the microstructure and mechanical properties of friction stir welded dissimilar butt joints of 6061-to-7050 aluminum alloys were evaluated. Microstructure analysis of the cross-section of the joints revealed distinct lamellar bands and various degrees of intermixing that were correlated with tool rotational speed. Due to the distinct mechanical properties of the two alloys, microhardness measurements showed a consistent asymmetric hardness distribution profile across the weld nugget, regardless of tool rotational speed. Under monotonic tensile loading, an increase in the joint strength was observed with the increase in the tool rotational speed. Regarding fracture, the joints consistently failed on the 6061 aluminum alloy side. Furthermore, two modes of failure were observed, one through the stir zone and the other through the heat-affected zone. Inspection of the fracture surfaces suggested that inadequate material intermixing produced at low tool rotational speeds was the cause for the low mechanical strength and failure through the stir zone. On the other hand, the failure observed through the heat-affected zone at high rotational speeds was produced due to the material softening as confirmed by the microhardness measurements.  相似文献   

2.
Dissimilar friction stir welding between magnesium and aluminum alloys   总被引:3,自引:0,他引:3  
Dissimilar friction stir welding between magnesium and aluminum alloy plates with thicknesses of 2 mm was performed. The tool for welding was rotated at speeds ranging from 800 to 1600 rpm under a constant traverse speed of 300 mm/min. For tool rotation speeds of 1000, 1200, and 1400 rpm, defect-free welds were successfully obtained and the surface morphology of the welds became smoother as the tool rotation speed was increased. The relatively simple bonded interface was clearly evident and had a zigzag pattern. A mixed microstructure of magnesium and aluminum alloys was formed near the bonded interface. The maximum tensile strength of about 132 MPa was obtained at the tool rotation speed of 1000 rpm. However, there were not noteworthy changes in the tensile strength as a function of the tool rotation speed. The elongation was 2% or less, regardless of the tool rotation speed.  相似文献   

3.
The tool pin geometry used in friction stir welding of any material affects the transportation and mixing of the materials at the joint interface during the welding process. This further affects the mechanical properties of the joint. Tapered threaded and unthreaded tool pin profiles were investigated in this research work. The relationship between the material mixing characteristics and mechanical properties of each pin profile were evaluated. The results indicate that more materials mixing occurred in the nugget zone of the welds at lower rotational speed with the threaded tool pin than the unthreaded tool pin. However, at medium rotational speed, more volume of materials was swept into each other better in the unthreaded tool pin than the threaded pin. The tensile strengths of welds with the threaded tool pin were higher than the unthreaded tool pin. Although the two tool pins exhibit similarities in hardness variations across the weld zones however, higher average values of hardness were obtained at the nugget zone for welds performed with the tapered threaded tool pin. These could be as a result of better material mixing and higher opposition to grain dislocations across the dividing lines in the welds from the threaded tool pin.  相似文献   

4.
采用新型超声振动强化搅拌摩擦焊接工艺实现了6061-T6铝合金以及QP980高强钢的搭接焊,对比分析了有无超声作用下,接头的宏观形貌、微观组织和拉伸剪切性能,同时研究了超声振动对焊接载荷的影响。结果表明:焊接前对母材施加超声振动,可以起到软化母材的作用,促进了材料的塑性流动,扩大了铝/钢界面区和焊核区,使更多的钢颗粒随搅拌针旋转进入铝合金侧,在界面区边缘形成钩状结构,进而提高了接头的失效载荷;超声改变了FSW接头断裂位置和断口形貌,提高了接头力学性能,在本实验工艺参数范围内,接头最大的平均失效载荷为4.99 kN;当焊接速度为90 mm/min,下压量为0.1 mm时,施加超声振动使接头的平均失效载荷提高了0.98 kN,拉剪性能提升28.24%;施加超声振动后轴向力Fz、搅拌头扭矩Mt和主轴输出功率分别下降2.46%,6.44%和4.59%。  相似文献   

5.
Microstructure and mechanical properties of friction stir weld joints of dissimilar Mg alloys AZ31 and AZ80 were investigated in the present work. Several different welding parameters were adopted in the study, and the effects of rotation speed and welding speed on the joint quality were discussed comprehensively. In addition, material arrangement which means that AZ31 alloy was at advancing side or at retreating side has significant influence on the joint formation, including the joint microstructure and mechanical properties. A few kinds of defects were observed when the improper parameters were taken in the experiment, and the reasons for generating these defects were revealed in this work. Sound joints with good mechanical properties could be easily obtained when AZ31 was at retreating side, but it was difficult to obtain the sound joint with the contrary material arrangement. These results suggest that the material with inferior plastic deformability should be set at the advancing side and the material with superior one should be set at the retreating side in order to get sound FSW joint of dissimilar Mg alloys.  相似文献   

6.
7.
The aim of this investigation was to study the effect of welding heat input and postweld natural aging on residual stress, microstructure, and precipitation distribution in different zones of dissimilar friction stir welding of 8 mm thick plates of AA6082-T6 and AA7075-T6. It was found that atomic diffusion occurs at the interface of the materials in the stir zone of the joints. Transmission electron microscopic investigations showed that reprecipitation of fine Guinier–Preston zone, β′, and η′ precipitates resulted in increased micro-hardness in the SZ after natural aging. An increase in welding heat input resulted in decreased maximum tensile residual stress and increased size of the tensile residual stress region. Natural aging within the SZ and thermo-mechanical affected zone resulted in 15–20 MPa reduction of the residual stress in these zones.  相似文献   

8.
Cast aluminum alloy, AC4CH-T6, and wrought aluminum alloy, A6061-T6, were joined by means of friction stir welding (FSW) technique. The effect of microstructure and post heat treatment on fatigue behavior of the dissimilar joints was investigated. Near the weld centre, Vickers hardness was lower than in the parent metals and the hardness minima were observed along the trace route of FSW tool’s shoulder edge. Tensile fracture took place on A6061 side where the hardness was minimal, resulting in the lower static strength of the dissimilar joints than AC4CH or A6061. Fatigue fracture occurred on AC4CH side due to casting defects and the fatigue strength of the dissimilar joints was similar to that of AC4CH, but lower than that of A6061. Friction stir process (FSP) and post heat treatment successfully improved the fatigue strength of the dissimilar joints up to that of the parent metal, A6061. __________ Translated from Problemy Prochnosti, No. 1, pp. 150–154, January–February, 2008.  相似文献   

9.
Thin sheets of aluminum alloy 6061-T6 and one type of Advanced high strength steel, transformation induced plasticity (TRIP) steel have been successfully butt joined using friction stir welding (FSW) technique. The maximum ultimate tensile strength can reach 85% of the base aluminum alloy. Intermetallic compound (IMC) layer of FeAl or Fe3Al with thickness of less than 1 μm was formed at the Al–Fe interface in the advancing side, which can actually contribute to the joint strength. Tensile tests and scanning electron microscopy (SEM) results indicate that the weld nugget can be considered as aluminum matrix composite, which is enhanced by dispersed sheared-off steel fragments encompassed by a thin intermetallic layer or simply intermetallic particles. Effects of process parameters on the joint microstructure evolution were analyzed based on mechanical welding force and temperature that have been measured during the welding process.  相似文献   

10.
Influence of spindle and weld speeds, metal location, direction of spindle rotation, and tool pin length on hooking in lap FSW of dissimilar aluminum alloys and the effect of hook on tensile and fatigue weld strength was studied. Optical images of the cross-section of the specimen welded at different process parameters were analyzed. The results indicate that increased spindle speed, reduced weld speed, higher tool pin length, clockwise spindle rotation, and locating the stronger material at the bottom of the joint increased the size of the hooking defect. Higher weld speeds and very high spindle speeds resulted in lower hook size on the advancing side (AS) compared to the retreating side (RS) of the joint. Welding with low weld speed would result in higher advancing side hook size compared to the retreating side. Friction stir weld joints fabricated with anti-clockwise spindle rotation has been found to have extremely low hook both on the AS and the RS of the joint. The tensile and fatigue strengths of the weld joints and plates are degraded by the hook. The fatigue strength of welded alloys could be improved by a double pass weld, the second pass welded immediately adjacent to the first pass.  相似文献   

11.
Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.  相似文献   

12.
镁合金搅拌摩擦焊接工艺参数优化   总被引:1,自引:0,他引:1  
为了优化镁合金搅拌摩擦焊接工艺参数,对5 mm厚镁合金AZ31B板材的搅拌摩擦焊接技术进行了试验研究,利用SN比实验设计,对镁合金AZ31B搅拌摩擦焊接工艺参数进行了方差分析,优化了搅拌头的材料、结构,最终确定搅拌头的材料为W6Mo5Cr4V2,结构为凹面圆台形.轴肩尺寸为12 mm.探针的根部直径为5.5 mm,端部直径为2.5 mm,长度为4.7 mm.获得镁合金AZ31B搅拌摩擦焊的工艺参数显著性顺序为旋转速度、横向速度和压力;确定了镁合金AZ31B搅拌摩擦焊的最优工艺参数为1500 r/min、47.5 mm/min、3kN.  相似文献   

13.
Study of friction stir welding of aluminum   总被引:1,自引:0,他引:1  
A half-cold hardening aluminum plate were friction-stir welded at various rotation speeds (850–1860 rpm) and travel rates of 30 to 160 mm/min with welding forces ranging between 2.5 and 10 MPa using different dimension welding heads. Experimental results show that the dimensions of the welding head are critical to produce sound welds. The microstructure of the weld is characterized by its much finer and equiaxed grains as contrasted with the coarse and band-like structure of the parent aluminum plate. Tensile strength of the welds is about 20% lower than that of the hardening aluminum plate, but about 10% higher microhardness is demonstrated by the welds in comparison with that of the aluminum plate in annealing condition. Moreover, travel rate of the welding head pin has a strong effect on microhardness and tensile strength of the FSW welds, and the ratio of rotation speed and travel rate of the head should be in a reasonable range to obtain high performance welds. The variables of the welding process are also discussed in terms of heat balance and energy input of the welds.  相似文献   

14.
Friction stir welding (classical FSW) is considered to offer advantages over the traditional fusion welding techniques in terms of dissimilar welding. However, some challenges still exist in the dissimilar friction stir lap welding of the aluminum/copper (Al/Cu) metallic couple, among which the formation of the Al–Cu intermetallic compounds is the major problem. In the present research, due to the fact that the formation and growth of the intermetallic are significantly controlled by the thermal history, the underwater friction stir welding (underwater FSW) was employed for fabricating the weld, and the weld obtained by underwater FSW (underwater weld) was analyzed via comparing with the weld obtained under same parameters by classical FSW (classical weld). In order to investigate the effect of the external water on the thermal history, the K-type thermocouple was utilized to measure the weld temperature, and it is found that the water could decrease the peak temperature and shorten the thermal cycle time. The XRD results illustrate that the interface of the welds mainly consist of the Al–Cu intermetallic compounds such as CuAl2 and Cu9Al4 together with some amounts of Al and Cu, and it is also found that the amount of the intermetallic in the underwater weld is obvious less than in the classical weld. The SEM images and the EDS line scan results also illustrate that the Al–Cu diffusion interlayer at the Al–Cu interface of the underwater weld was obviously thinner than that of the classical weld.  相似文献   

15.
The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.  相似文献   

16.
Ultrasonic assisted friction stir welding (UaFSW) was used to join 6061-T6 aluminum and Ti6Al4V alloys. A small plunge depth endowed with the low heat input was used and the sound joints without obvious thickness reduction were achieved. A diffusion-type bonding without the intermetallic compounds layer was observed at the joint interface. The ultrasonic improved the diffusion thickness and decreased the average size of grains and titanium alloy fragments. A hook-like structure was formed at the bottom interface of the UaFSW joint, which improved the bonding length and the mechanical interlocking. The microhardness of the stir zone was increased because of the further grain refinement induced by ultrasonic. The maximum tensile strength of the UaFSW joint was 236 MPa, which reached 85% of the base 6061-T6 alloy.  相似文献   

17.
The effect of processing parameters on static strength and fracture mechanisms of dissimilar friction stir spot welds between different aluminium alloys was studied. Tensile shear strength increased with decreasing tool rotational speed and increasing tool holding time, while cross tension strength decreased with increasing both parameters. Two fracture modes were observed: nugget shear fracture and mixed mode fracture under tensile shear loading, and debonding and pull‐out of the nugget under cross tension loading. Based on experimental observation, the dependence of static strength on processing parameters and the occurrence of different fracture modes were discussed.  相似文献   

18.
Friction stir welding (FSW) is a solid state welding process for joining aluminium alloys and is employed in aerospace, rail, automotive and marine industries. In FSW, the base metal properties such as yield strength, hardness and ductility control the plastic flow of the material under the action of a rotating non-consumable tool. The FSW process parameters such as, the tool rotational speed, the welding speed and the axial force play a major role in deciding the weld quality. In this investigation, FSW joints were made using six different grades of aluminium alloys (AA1100, AA2219, AA2024, AA6061, AA7039, and AA7075) using different levels of process parameters. Macrostructural analysis was carried out to identify the feasible working range of process parameters. The optimal welding conditions to attain maximum strength for each alloy were identified using Response Surface Methodology (RSM). Empirical relationships were established between the base metal mechanical properties of aluminium alloys and optimised FSW process parameters. These relationships can be effectively used to predict the optimised FSW process parameters from the known base metal properties (yield strength, elongation and hardness).  相似文献   

19.
In this work,refill friction stir spot welding(RFSSW) was used to weld 2 mm-thick 5083-O alloy.The Box–Behnken experimental design was used to investigate the effect of welding parameters on the joint lap shear property.Results showed that a surface indentation of 0.3 mm effectively eliminated the welding defects.Microhardness of the stir zone(SZ) was higher than that of the base material(BM) and the hardness decreased with increasing the heat input during welding.The optimum failure load of 7.72 k N was obtained when using rotating speed of 2300 rpm,plunge depth of 2.4 mm and refilling time of 3.5 s.Three fracture modes were obtained during the lap shear test and all were affected by the hook defect.  相似文献   

20.
金士杰  田鑫  林莉 《材料工程》2022,50(8):45-59
铝合金搅拌摩擦焊(friction stir welding, FSW)焊接参数选择不当将会产生隧道孔、未焊透(lack of penetration, LOP)和吻接等取向复杂、细微紧贴的缺陷。首先,本文简述了FSW焊缝与典型缺陷特征,总结了超声检测时面临纵向分辨力低、缺陷表征不完整、材料与缺陷声阻抗接近和灵敏度不足等难点。随后,从常规超声、超声衍射时差法(time-of-flight diffraction, TOFD)、相控阵超声检测技术和其他超声检测技术等方面综述了现有的铝合金FSW超声检测研究工作。最后,结合超声信号处理方法和机器学习方法对研究前景进行展望:可以通过分析和提取信号特征,进一步提升超声检测分辨力和信噪比,并实现取向复杂缺陷和细微紧贴缺陷的精准辨识与定量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号