首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation focuses on the parametric influence of machining parameters on the surface finish obtained in turning of glass fiber reinforced polymer (GFRP) composites. The experiments were conducted based on Taguchi's experimental design technique. Response surface methodology and analysis of variance (ANOVA) were used to evaluate the composite machining process to perform the optimization. The results revealed that the feed rate was main influencing parameter on the surface roughness. The surface roughness increased with increasing the feed rate but decreased with increasing the cutting speed. Among the other parameters, depth of cut was more insensitive. The predicted values and measured values were fairly close to each other, which indicates that the developed model can be effectively used to predict the surface roughness on the machining of GFRP composites with 95% confidence intervals. Using such model could remarkablely save the time and cost.  相似文献   

2.
The present investigation focuses on the multiple performance machining characteristics of GFRP composites produced through filament winding. Grey relational analysis was used for the optimization of the machining parameters on machining GFRP composites using carbide (K10) tool. According to the Taguchi quality concept, a L27, 3-level orthogonal array was chosen for the experiments. The machining parameters namely work piece fiber orientation, cutting speed, feed rate, depth of cut and machining time have been optimized based on the multiple performance characteristics including material removal rate, tool wear, surface roughness and specific cutting pressure. Experimental results have shown that machining performance in the composite machining process can be improved effectively by using this approach.  相似文献   

3.
This article proposed for the first time the method of the low-speed wire electrical discharge turning (LS-WEDT) combined with the multiple cutting strategy to fabricate carbon steel micro-rods. First, the rotating apparatus submerged in working fluid is designed and manufactured to enable the low-speed wire electrical discharge machine to generate cylindrical geometries. Besides, material removal rate, surface roughness, and machining precision of the micro-rod manufactured by the LS-WEDT are, respectively, investigated. Moreover, the surface microstructure and surface chemical reaction of micro-rods are characterized using scanning electron microscopy and energy-dispersive spectroscopy analysis. Experimental results display that the micro-rod of 70?µm diameter and 1000?µm length can be successfully fabricated. More importantly, the mean absolute diameter deviation of the micro-rod fabricated by LS-WEDT is 0.65?µm and the surface roughness is 0.53?µm, which identified the high machining precision and good surface quality of the micro-rod.  相似文献   

4.
A mathematical model for the surface roughness in a turning operation was developed in terms of the cutting speed, feed and depth of cut. Utilizing PL1 language and an IBM 360/50 computer, the model was used to generate contours of surface roughness in planes containing the cutting speed and feed at different levels of depth of cut. The surface roughness contours were used to select the machining conditions at which an increase in the rate of metal removal was achieved without sacrifice in surface finish.  相似文献   

5.
In this paper, experiments are conducted by machining from different crystallographic orientations of monocrystalline silicon, and the effects of crystallographic orientation on the micro electrical discharge machining (EDM) process are discussed. The results demonstrate that the machining speed and surface roughness are varied when crystallographic orientation changes. The surface roughness is seen to vary by as much as twofold with crystallographic orientation, while the ratio between the maximum and minimum values of material removal rate is 1.76. The unique material removal mechanism of micro EDM enhances the effects of crystal anisotropy on micro electrical discharge machining process.  相似文献   

6.
针对小孔内壁光整加工技术的难题,本文提出一种新型精密研磨孔光整加工技术,以磁致相变理论为指导,从微观角度阐述了液体磁性磨具研磨孔光整加工的材料去除机理.采用"双刃圆半径"模型进行单个磨料颗粒切削模型研究,得出小孔光整加工的材料去除率数学表达式.通过实验验证了磨料粒度、入口压力、电流强度等因素对材料去除率以及表面粗糙度的影响,实验结果表明:在合适的范围内,增大磨料颗粒直径、入口压力以及电流强度有利于提高材料的去除率和表面质量.而当磨粒直径、入口压力以及电流强度选取过大时,虽然能获得较高的材料去除率,但是最终获得的表面粗糙度值并不理想.该研究为通孔零件内壁表面精密光整加工提供了有益参考.  相似文献   

7.
Nickel alloys including Inconel 718 are considered as challenging materials for machining. Laser beam machining could be a promising choice to deal with such materials for simple to complex machining features. The machining accuracy is mainly dependent on the rate of material removal per laser scan. Because of the involvement of many laser parameters and complexity of the machining mechanism it is not always simple to achieve machining with desired accuracy. Actual machining depth extremely varies from very low to aggressively high values with reference to the designed depth. Thus, a research is needed to be carried out to control the process parameters to get actual material removal rate (MRRact) equals to the theoretical material removal rate (MRRth) with minimum surface roughness (SR) of the machined surfaces. In this study, five important laser parameters have been used to investigate their effects on MRR and SR. Statistical analysis are performed to identify the significant parameters with their strength of effects. Mathematical models have been developed and validated to predict the machining responses. Optimal set of laser parameters have also been proposed and confirmed to achieve the actual MRR close to the designed MRR (MRR% = 100.1%) with minimum surface roughness (Ra = 2.67 µm).  相似文献   

8.
In order to improve machining efficiency of sapphire wafer machining using the conventional loose abrasive process, fixed-abrasive diamond plates are investigated in this study for sapphire wafer grinding. Four vitrified bond diamond plates of different grain sizes (40?µm, 20?µm, 7?µm, and 2.5?µm) are developed and evaluated for grinding performance including surface roughness, surface topography, surface and subsurface damage, and material removal rate (MRR) of sapphire wafers. The material removal mechanisms, wafer surface finish, and quality of the diamond plates are also compared and discussed. The experiment results demonstrate that the surface material is removed in brittle mode when sapphire wafers are ground by the diamond plates with a grain size of 40?µm and 20?µm, and in ductile mode when that are ground by the diamond plates of grain sizes of 7?µm and 2.5?µm. The highest MRR value of 145.7?µm/min is acquired with the diamond plate with an abrasive size of 40?µm and the lowest surface roughness values of 3.5?nm in Ra is achieved with the 2.5?µm size.  相似文献   

9.
Chemical/mechanical polishing can be used to polish the rough surface of diamond films prepared by chemical vapor deposition (CVD). In this paper, a mixture of oxidizing agents (LiNO3 + KNO3) has been introduced to improve the material removal rate and the surface roughness in chemical/mechanical polishing because of its lower melting point. It had been shown that by using this mixture the surface roughness Ra (arithmetic average roughness) could be reduced from 8-17 to 0.4 μm in 3 h of polishing, and the material removal rate can reach 1.7-2.3 mg/cm2/h at the temperature of 623 K. Pure aluminium is compared with cast iron as the contact disk material in the polishing. Although the material removal rate of aluminiumdisk is lower than that of cast iron, it can eliminate the carbon contamination from the contact disk to the surface of diamond films, and facilitate the analysis of the status of diamond in the chemical/mechanical polishing. The surface character and material removal rate of diamond films under different polishing pressure and rotating speed have also been studied. Graphite and amorphous carbon were detected on the surface of polished diamond films by Raman spectroscopy. It has been found that the oxidization and graphitization combined with mechanical cracking account for the high material removal rate in chemical/mechanical polishing of diamond films.  相似文献   

10.
Titanium alloy (Ti-6Al-4V), being considered as hard-to-machine material, offers many challenges especially during conventional machining. Electric discharge machining could be a good option if it offers a good match between material removal rate and surface finish of the machined feature. The issue of appropriate selection of electrode material for good machining of Ti-6Al-4V is not yet comprehensively explored which is the core focus of this study. Moreover, the effect of pulse time ratio is thoroughly examined which is not specifically studied before. Discharge current and pulse time ratio are considered as the input variables, whereas the material removal rate and surface roughness are selected as performance measures of machinability. Copper, aluminum, brass and graphite are employed to evaluate the machining behavior. Experimental results revealed that aluminum electrode provides the lowest surface roughness, whereas the maximum material removal rate is achieved using graphite electrode. However, graphite electrode can offer high material removal rate with low surface roughness by initially employing negative tool polarity for rough machining and then positive tool polarity for fine machining.  相似文献   

11.
In recent years, the utilization of glass fiber-reinforced polymers (GFRP) composite materials in many different engineering fields has undergone a tremendous increase. Accordingly, the need for accurate machining of composites has increased enormously. In the present work, an attempt has been made to assess the influence of machining parameters on the machining of GFRP composites. Design of experiments (full factorial design) concept has been used for experimentation. The machining experiments were conducted on all geared lathe using coated cermet tool inserts with two level of factors. The factors considered were cutting speed, work piece fiber orientation angle, depth of cut and feed rate. A procedure has been developed to assess and optimize the chosen factors to attain minimum surface roughness by incorporating: (i) response table and response graph; (ii) normal probability plot; (iii) interaction graphs; (iv) analysis of variance (ANOVA) technique.  相似文献   

12.
Milling is the most practical machining (corrective) operation for removing excess material to produce a well defined and high quality surface. However, milling composite materials presents a number of problems such as surface delamination associated with the characteristics of the material and the cutting parameters used. In order to minimize these problem is presented a study with the objective of evaluating the cutting parameters (cutting velocity and feed rate) related to machining force in the workpiece, delamination factor, surface roughness and international dimensional precision in two GFRP composite materials (Viapal VUP 9731 and ATLAC 382-05). A plan of experiments, based on an orthogonal array, was established considering milling with prefixed cutting parameters. Finally an analysis of variance (ANOVA) was preformed to investigate the cutting characteristics of GFRP composite materials using a cemented carbide (K10) end mill.  相似文献   

13.
The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 µm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.  相似文献   

14.
Near-dry wire electrical discharge machining (WEDM) is a modified WEDM process, which has no adverse effects on the environment, in which metal removals have been done with the dielectric medium being used in the form of a mist. As the increase in production by reducing the machining time is a costly affair, the input parameters attract considerable attention for their optimization. The predominant control characteristics in this study are the time-bound material removal and surface quality. The time duration of the electrical pulse on and off, wire feed, air inlet pressure, and water flow rate are the parameters considered for this experimental analysis. In this paper, the optimization techniques such as RSM method and analysis of variance (ANOVA) were used to route the experiments and optimize the responses of near-dry WEDM process for machining the material Monel alloy. A model has been formulated mathematically for the two vital responses needed, under the influence of regression analysis. Additivity test has been performed to validate the mathematical model. The air–water mixture in the form of a mist was used in place of dielectric medium to study the impact on material removal rate (MRR), surface roughness (Ra), and environment. It was observed that a high surface finish could be obtained at 3 bar pressure.  相似文献   

15.
The objective of this research is to investigate the machining characteristics of manganese-zinc (Mn-Zn) ferrite magnetic material using electrical-discharge machining (EDM). The material removal rate, the surface topography, the surface roughness, the recast layer, and the chemical composition of the machined surface were studied in terms of EDM processing variables. Experimental results indicate that the morphology of debris revealed the mechanism of material removal. The surface microgeometry characteristics are not always uniform and homogenous and the EDM process produces much damage on the machined surface. The material removal rate, the surface roughness, and the recast layer are proportional to the applied discharge energy.  相似文献   

16.
K. Palanikumar   《Materials & Design》2007,28(10):2611-2618
Now a days glass fiber reinforced plastic (GFRP) composite materials are a feasible alternative to engineering materials. They have excellent properties and are being extensively used in variety of engineering applications. However, the users of FRP are facing difficulties to machine it, because of its anistropic properties. In this paper, an attempt has been made to model the surface roughness through response surface method (RSM) in machining GFRP composites. Four factors five level central composite, rotatable design matrix is employed to carryout the experimental investigation. Analysis of variance (ANOVA) is used to check the validity of the model. For finding the significant parameters student’s t-test is used. Also, an analysis of the influences of the entire individual input machining parameters on the response has been carried out and presented in this study.  相似文献   

17.
Abstract

The effect of material swelling on the surface roughness in ultraprecision diamond turning has been investigated. Experimental results from the power spectrum analysis indicate that the profile of the tool marks is distorted by the effect of swelling of the materials being cut. A good correlation exists between the surface roughness and the amount of swelling that has occurred in the machined layer. Radically different surface roughness profiles were obtained when machining aluminium and copper single crystals with the same cutting plane and tool shape. The difference in the machining behaviour could not be accounted for by elastic recovery alone but could be explained by considering the plastic deformation induced in the machined layer.  相似文献   

18.
This article focuses on parametric optimization for photochemical machining (PCM) of brass and german silver. The aim of the study is to analyze the effect of control parameters on response measures, that is, surface roughness, material removal rate, and edge deviation and optimization of parameters considering different weight percentage for each performance measure. The control parameters have been selected as etchant concentration, etching temperature, and etching time. Using full factorial method of design of experiments, PCM has been carried out using ferric chloride as etchant. Surface roughness and edge deviation should be less, while material removal rate is desired high. For satisfying this multi-objective condition, overall evaluation criteria (OEC) have been formulated by assigning different and equal weight percentage to response measures. The optimized condition for particular OEC is obtained, and analysis of variance (ANOVA) has been performed for observing effect of control parameters on response measures. Surface topography study has been performed using scanning electron microscopy, and material composition analysis has been carried out using energy dispersive spectroscopy. The surface roughness is observed lower for brass, while the edge deviation is found lesser for german silver. The material removal rate is observed higher for brass compared to german silver.  相似文献   

19.
Process planning and optimization is crucial to help establish the economic and quality viability of hard turning processes with the presence of a wide spectrum of tooling and process parameters. A systematic methodology is discussed in this paper to design the optimal tool geometry and cutting conditions for hard turning, incorporating the consideration of part finish, tool wear, and material removal rate. Experimental demonstration of the optimization scheme is presented at two levels: the first level is to validate the process prediction results and the second is to validate the optimization results. Hardened AISI 1053 steel was selected as the workpiece material in this study and its material property related parameters, including the Johnson-Cook constants and wear coefficients, were determined based on the machining tests. It is seen that the cutting force and tool wear progression agrees well with the predictions from 3-D oblique cutting model, and the machined surface roughness can be predicted with a surface kinematic model incorporating the plowing effect. The experimental results also showed that the process configuration as derived from the analytical optimization procedure lends itself to superior results in comparison to other experimental results under non-optimal configurations.  相似文献   

20.
In the current work, the statistical analysis of various electric discharge machining parameters on Al6082 ultra-fine grained aluminium alloy using Taguchi method has been presented. Repetitive corrugation and straightening (RCS) method was employed to obtain ultra-fine grained aluminium alloy. The electric discharge machining studies were carried out for test variables – pulse off time, pulse on time and current (I). The specimens were machined in dielectric medium with current range of 3 A to 9 A in step of 3 A. Machining features of the samples analysed statistically by adopting the Taguchi's - design of experiments (DOE) methodology. Impact of parameters on material removal rate (MRR) and surface roughness (SR) were examined via signal-to-noise ratio (S/N ratio, expressed in decibel, dB) as well as analysis-of-variance (ANOVA). Outcomes disclose that every selected response explicitly surface roughness (SR) and material removal rate was significantly influenced by parameters. The material removal rate was found to rise with discharge current and decrease with the duration of pulse on time and the duration of pulse off time. On the other hand, the surface roughness increased with increase in peak current and decreased with pulse on time and pulse off time especially. The machining mechanisms were examined by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号