首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this investigation, thermal simulated specimens were used to investigate the effect of second peak temperature during in-service welding on characteristic fracture energy and microstructure feature of the subcritically (SC), intercritically (IC), supercritically (SCR), and unaltered (UA) reheated coarse grain heat-affected zones (CGHAZs). The API X70 high-strength pipeline micro-alloyed steel was subjected to processing during in-service welding by applying double thermal cycle shielded metal arc welding process with heat input of 9.3 kJ/cm and thermal cycles to simulate microstructure of reheated CGHAZs. This consisted of first thermal cycle with a peak temperature of 1350 °C, then reheating to different second peak temperatures of 600, 800, 1000, and 1200 °C with a constant cooling rate of 60 °C/s. Toughness of the simulated reheated CGHAZs were assessed using Charpy impact testing at −20 °C, and the corresponding fractographs, optical micrographs, and electron micrographs have been examined. It is found that accelerating cooling rate during in-service welding has an improving effect on the microstructure of CGHAZs. Owing to small heat-input and accelerating cooling, the grain size in reheated CGHAZs is relatively small and the brittle microphases are eliminated or minimized. The Charpy impact results show that the CGHAZ fracture energy is improved after the second thermal cycle. The SC CGHAZ showed higher absorbed impact energy and the IR CGHAZ had less absorbed energy, but the phenomenon of embrittlement in IR CGHAZ is not serious. Therefore, it can be concluded that the fracture energy of CGHAZ and IR CGHAZ can be improved by accelerating cooling with appropriate cooling rate.  相似文献   

2.
The effects of real and Gleeble simulated double pass thermal cycles on the properties of the intercritically reheated coarse grained heat affected zones in X80 microalloyed pipeline steel has been investigated. The Gleeble simulated process involved heating the X80 steel specimens to the first peak temperature of 1400 °C and then reheating to the second peak temperature of 800 °C, with different cooling rates. The size and area fraction of martensite/austenite (M/A) constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software. In addition, misorientation was characterized by electron back-scatter diffraction analysis. It is clear that the intercritically thermal cycles have a significant effect on morphology of M/A constituents. The M/A constituent’s size, such as mean diameter and length, are important factors influencing Charpy impact properties of thermally simulated intercritically reheated heat affected zones. The simulated thermal cycles of the intercritically reheated region in the high heat input tandem submerged arc welding processes, showed extremely poor Charpy impact absorbed energy. The intercritical reheated thermal cycles with lower heat input value showed higher Charpy impact absorbed energy due to a decrease in the prior-austenite grain and M/A particle size.  相似文献   

3.
This study investigates the correlation between the microstructural change and fracture characteristics in the coarse-grained heat-affected zones (CGHAZs) of the newly developed quenching, lamellarizing and tempering (QLT)-processed 9% Ni steel. The microscopic fracture behaviors of the various sub-zones within the HAZs including local brittle zone (LBZ) were estimated using simulated HAZ specimens. Both results of Charpy impact tests and in situ scanning electron microscopy (SEM) observations on simulated CGHAZ specimens show that the inter-critically reheated coarse-grained HAZ (IC CGHAZ) is a primary LBZ of this steel at cryogenic temperature, but not at room temperature. Microstructural analysis suggests that, unlike in other studies, the cryogenic LBZ phenomenon of the IC CGHAZs cannot be explained simply by the amount of martensite–austenite (M–A) constituents, but is mainly associated with the carbon contents in them. From all results obtained, a mechanism for microscopic toughness change among the CGHAZs is proposed and discussed.  相似文献   

4.
Samples of LixWO3 with x = 0.05-0.7 were synthesized at 700 °C for 7 days using appropriate amounts of Li2WO4, WO3 and WO2 in evacuated sealed silica tubes. The products reveal different phases of perovskite tungsten bronze (PTB). An interesting phenomenon observed for the PTB phases is the gradual change in colours when they are exposed at room temperature ambient conditions (in air). This effect has been investigated using X-ray powder diffraction, infrared absorption and optical reflectivity methods for the powdered samples before and after 30 and 90 days in air. The spectra of the samples with x = 0.25-0.5 are dominated by a peak with maximum around 16,000 cm−1 in the Kubelka Munk spectra which is related to the cubic LixWO3 phase. The peak intensity increases with increasing x. After 30 days of exposure in air this peak disappeared for x < 0.5 samples due to a diffusion of Li from LixWO3. X-ray and IR data show a gradual transformation into the lower symmetric phases (PTBcubic ⇒ PTBtetragonal ⇒ PTBorthorhombic ⇒ PTBmonoclinic). The results suggest that Li is attracted by O2 to the surface forming Li2O which further reacts with H2O and CO2 in air. The in air altered samples regain their original colour when reheated at 500 °C in vacuum.  相似文献   

5.
Nanocrystalline perovskite KNbO3 is prepared by a peroxo-precursor decomposition method at moderate temperatures of 650-900 °C. Peroxo-heteropoly-niobic acid is prepared by direct reaction between NbC powder and H2O2 aq, and mixing the peroxo-heteropoly-niobic acid with KOH aq yields an amorphous precursor salt. Perovskite KNbO3 is obtained by heating the precursor in air for 1 h at 650-900 °C. The X-ray diffraction patterns were well fitted with the space group Pm3m in the Rietveld analysis. The X-ray diffraction peak profiles and field emission scanning electron microscope images indicate the crystallite size is in the range of 25-35 nm.  相似文献   

6.
In this study, the ultra-fine NiCuZn-ferrite was prepared by a coprecipitation method. The magnetic properties were investigated in terms of calcining temperature. The ferrite powders, Ni0.206Cu0.206Zn0.618Fe1.94O4−δ, were initially heat treated at various temperatures of 300-750 °C, and then sintered at the final temperature of 900 °C. The average particle size calculated by a XRD pattern and confirmed by a transmission electron microscope (TEM) micrograph was 7.5 nm. The calcining temperature was an important factor for microstructures and magnetic properties of the sintered ferrite. Scanning electron microscope (SEM) micrographs showed a uniform grain growth with small pores and high densification at the calcining temperature of 450 °C. From the results of magnetic property measurements, the ferrite calcined at 450 °C showed higher initial permeability (170) and quality factor (72) than those of other calcining temperatures.  相似文献   

7.
Silicon oxynitride (SixOyNz) buried insulating layers were synthesized by dual implantation of nitrogen (14N+) and oxygen (16O+) ions sequentially into single crystal silicon in the ratio 1:1 at 150 keV to ion-fluences ranging from 1 × 1017 to 5 × 1017 cm−2. Heavy ion elastic recoil analysis (HI-ERDA) studies of as implanted samples show Gaussian like distributions of nitrogen and oxygen. After annealing at 800 °C, both the nitrogen and oxygen distributions appear as flat plateau like regions near projected range showing the formation of a continuous buried oxynitride layer. Micro-Raman study of as implanted samples shows a broad peak at 480 cm−1 for all fluences. It signifies a complete amorphization of silicon due to high fluence implantation. The annealing at 800 °C results in the reduction of the intensity of the broad peak observed at 480 cm−1 and also gives rise to an additional peak at 517 cm−1. It shows partial recrystallization of damaged silicon due to annealing. The X-ray rocking curves studies from high-resolution X-ray diffraction (HRXRD) of the samples implanted with different fluences have also further confirmed partial recrystallization of damaged silicon on annealing.  相似文献   

8.
9.
Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Si(OC2H5)4, LiNO3 and Bi(NO3)3·5H2O as raw materials, CaO-MgO-SiO2 submicron powders were prepared at low temperature by sol-gel method. The crystallization temperature was decreased enormously by the introduction of Li-Bi liquid phase sintering aids into Ca-Mg-Si sol, and the powders with average particle sizes of 80-100 nm and 200-400 nm were obtained at the calcining temperature of 750 °C and 800 °C, respectively. The sintering characteristic and dielectric properties of powders calcined at 750 °C with different content of powders calcined at 800 °C were studied. When the content of powders calcined at 800 °C was 10 wt%, the dielectric ceramic sintered at 890 °C had compact structure, and possessed excellent microwave dielectric properties: ?r = 7.16, Q × f = 25630 GHz, τf = −69.26 ppm/°C.  相似文献   

10.
Results from fracture mechanics tests on 15 mm thick grade D ship steel and weld are organised into a toughness distribution indexed to the Charpy 27 joule temperature, T27J. The tests are carried out at 300 MPa√m/s to simulate the strain rate appropriate to a long (≈1 m) through thickness crack in the deck of a ship under storm conditions. Most of the data are in the brittle to ductile transition region and end in cleavage fracture. A best fit to the data is found using the exponential curve fit (ECF) method. Lack of censoring of invalid results means that the trend line is not a true ‘plane strain’ fit. It is argued that inclusion of ‘plane stress’ data makes the resultant toughness distribution more relevant to ship fracture predictions. Equations are presented which allow the toughness to be plotted at any chosen probability level as a function of temperature relative to T27J. A safe lower bound to the data is given by the 0.1% probability trend assuming that T27J for grade D plate and weld is no higher than −20 °C. The data are also used to propose that it is impossible to generate an elastic ductile tearing instability in ship steel with Charpy upper shelf values of 100 J or more.  相似文献   

11.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

12.
Thin ferroelectric films of PLTx (Pb1−xLaxTi1−x/4O3) have been prepared by a sol-gel spin coating process. As deposited films were thermally treated for crystallization and formation of perovskite structure. Characterization of these films by X-ray diffraction (XRD) have been carried out for various concentrations of La (x = 0.04, 0.08 and 0.12) on ITO coated corning glass substrates. For a better understanding of the crystallization mechanism, the investigations were carried out on films annealed at temperatures (350, 450, 550 and 650 °C). Characterization of these films by X-ray diffraction shows that the films annealed at 650 °C exhibit tetragonal phase with perovskite structure. Atomic force microscope (AFM) images are characterized by slight surface roughness with a uniform crack free, densely packed structure. Fourier transform infrared spectra (FTIR) studies of PLTx thin films (x = 0.08) deposited on Si substrates have been carried out to get more information about the phase stabilization.  相似文献   

13.
Single-phased and (111)-oriented Ag2O film deposited using direct-current reactive magnetron sputtering is annealed using different annealing temperatures (Ta) for 1 h in Ar and H2 mixture. After hydrogen annealing, a very weak but clear Ag(200) diffraction peak begins to appear, and the Ag2O diffraction peak weakens at Ta = 175 °C. However, the Ag diffraction peak becomes discernable at Ta = 190 °C. No Ag2O diffraction peaks but rather Ag diffraction peaks are discerned at Ta = 200 °C. The hydrogen reduction effect can reduce the film's critical thermal decomposition temperature to 175 °C. After hydrogen annealing, the surface of the film evolutes from compact and uniform to osteoporosis, and then to a porous structure. Moreover, the optical properties of the film obviously change at Ta over 190 °C, indicating that the hydrogen reduction can significantly enhance the decomposition of Ag2O due to H2 dissociation on the surface followed by gaseous H2O molecule formation and desorption.  相似文献   

14.
Rare earth and alkaline earth co-doped Ce0.85La0.10Ca0.05O2−δ electrolyte material with the powder obtained by solid-state reaction method was sintered at 1300, 1400, 1500 and 1600 °C respectively. The results showed that the ionic conductivity of the sample sintered at 1400 °C was slightly lower compared to that sintered at 1500 °C in the temperature range of 300-550 °C, while the sample sintered at 1400 °C showed the highest ionic conductivity in all the samples above 550 °C. The ionic conductivity of ∼0.021 S/cm at 600 °C and the relative density of 98.2% were observed for the sample sintered at 1400 °C. In addition, the highest flexural strength with 145 MPa was also obtained for the sample sintered at 1400 °C. It suggested that the sintering temperature for Ce0.85La0.10Ca0.05O2−δ electrolyte may be reduced to as low as 1400 °C with desired properties.  相似文献   

15.
SmBaCuCoO5+δ, a double-perovskite oxide, was synthesized by the modified Pechini method and developed as cathode material for proton-conducting solid oxide fuel cells. The SmBaCuCoO5+δ powders calcined at 800 °C, show the double-perovskite structure in powder XRD pattern. SmBaCuCoO5+δ has a more suitable thermal expansion coefficient than SmBaCo2O5+δ for BaCe0.7Zr0.1Y0.2O3−δ electrolyte-based solid oxide fuel cells. The single cell was tested with humidified hydrogen (∼3% H2O) as the fuel and static air as the oxidant. The performance of the cell was characterized by DC Electronic Load and AC impedance spectroscopy. The peak power densities reached 355-86 mW cm−2 in the range of 700-550 °C and the interfacial polarization resistance decreased with increasing operation temperature, from 3.1 Ω cm2 at 550 °C to 0.22 Ω cm2 at 700 °C. The high power density and low polarization demonstrate that SmBaCuCoO5+δ is a potential candidate for proton-conducting solid oxide fuel cells.  相似文献   

16.
The microwave dielectric properties and the microstructures of 0.25 wt.% CuO-doped LaAlO3 ceramics with ZnO additions have been investigated. The sintered LaAlO3 ceramics are characterized by X-ray diffraction spectra and scanning electron microscopy (SEM). Tremendous reduction in sintering temperature can be achieved with the addition of sintering aids CuO and ZnO. The ceramic samples show that dielectric constants (εr) of 22−24 and Q×f values of 33,000−57,000 (at 9.7 GHz) can be obtained at low sintering temperatures 1340−1460°C. The temperature coefficient of resonant frequency varies from −24 to −48 ppm/°C. At the level of 0.25 wt.% CuO and 1 wt.% ZnO additions, LaAlO3 ceramics possesses a dielectric constant (εr) of 23.4, a Q×f value of 57,000 (at 9.7 GHz) and a τf value of −38 ppm/°C at 1400°C for 2 h.  相似文献   

17.
La modified SBT (Sr0.8La0.1Bi2.1Ta2O9) thin films of different thickness were fabricated on Pt/Ti/SiO2/Si substrates by the metalorganic decomposition technique. All the films were annealed layer-by-layer at 800 °C using a rapid thermal annealing furnace. X-ray diffraction analysis indicated that the relative intensity of the (2 0 0) diffraction peak [I(2 0 0)/I(1 1 5)] increased with the increase of the film thickness. Eventually, an a-axis preferentially oriented SLBT film was obtained. These results are discussed with respect to the anisotropy of the grain growth. The a-axis preferentially oriented SLBT film, whose relative intensity of the (2 0 0) peak [I(2 0 0)/I(1 1 5)] was 1.05, had a remanent polarization (2Pr) value of 21 μC/cm2 and a coercive field (2Ec) value of 70 kV/cm under the electric field of 200 kV/cm.  相似文献   

18.
Amorphous nanostructured MnO2 film was anodically deposited onto economical duplex stainless steel substrate. The obtained MnO2 film was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy for microstructural, morphological, and compositional studies. The capacitive behavior was systematically investigated by cyclic voltammetry, charge-discharge cycling and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 electrolyte at different operating temperatures ranging from 20 to 60 °C. The specific capacitance (SC) was improved with an increase of operating temperature, and the highest SC of 398 F/g was achieved at a scan rate of 10 mV/s and operating temperature of 60 °C. The mechanism of SC improvement at elevated operating temperature was investigated using EIS. With an increase of operating temperature, the conductivity of electrolyte was improved, and the charge-transfer resistance (Rct) was decreased. The temperature dependence of 1/Rct follows an Arrhenius equation. The MnO2 film was electrochemically activated at 60 °C due to the formation of NayMnO2 after discharging.  相似文献   

19.
Fine MoSi2 powders containing a small amount of Mo5Si3 have been prepared by self-propagating high-temperature synthesis (SHS), followed by spark plasma sintering (SPS) for 10 min at 1200-1500°C and 30 MPa. Dense MoSi2 materials, in which the grain size is ∼7.5 μm, have been fabricated at 1300°C. They exhibit excellent mechanical properties: Vicker’s hardness Hv (10.6 GPa), fracture toughness KIC (4.5 MPa m1/2), and bending strength σb (560 MPa). The strength of 325 MPa can be retained up to 1000°C.  相似文献   

20.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure and dielectric properties of NBCTO ceramics sintered at various temperatures with different soaking time were investigated. Pure NBCTO phase could be obtained with increasing the temperature and prolonging the soaking time. High dielectric permittivity (13,495) and low dielectric loss (0.031) could be obtained when the ceramics were sintered at 1000 °C for 7.5 h. The ceramics sintered at 1000 °C for 7.5 h also showed good temperature stability (−4.00 to −0.69%) over a large temperature range from −50 to 150 °C. Complex impedances results revealed that the grain was semiconducting and the grain boundaries was insulating. The grain resistance (Rg) was 12.10 Ω cm and the grain boundary resistance (Rgb) was 2.009 × 105 Ω cm when the ceramics were sintered at 1000 °C for 7.5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号