首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed studies are conducted on the microstructural evolution and mechanical behavior of a high strength low alloy (HSLA) steel processed by warm multi-axial forging (MAF). After nine MAF strain steps, the initial ferrite grains of average 13-μm size reduced to submicron-sized grains with over 0.7 fraction of high angle grain boundaries. Pearlitic cementite is fragmented and refined to about 50–100 nm size particles. The microstructure evolution with respect to fraction of HAGB with increase in number of strain steps is more sluggish in HSLA steel as compared to plain carbon steel of comparable carbon content. This is ascribed to the Zener pinning effect of (Ti, Nb) carbide particles. Tensile strength and hardness values of MAFed steel increased by more than 45 and 58 %, respectively, after nine warm MAF strain steps, whereas the fracture strain was reduced from 21 to 12 %.  相似文献   

2.
AISI 1024 steel was severely deformed by using warm (500 °C) multiaxial forging (MAF) technique using up to nine forging passes in order obtain a composite ultrafine grained (UFG) microstructure consisting of fragmented cementite particles. Microstructural evolution is studied using optical and electron microscopy. After warm MAF, the hardness and strength properties improved significantly, although total elongation values decreased. The tribological properties of UFG low carbon steel produced by MAF have been investigated. Dry sliding was carried out using constant sliding speed. The wear test results showed that the strengthening of AISI 1024 steel by warm MAF processing did not lead to improvement of wear resistance. The results are explained on the basis of its microstructural features and lower pull-off work. Higher grain boundary density, presence of submicron-sized cementite particles, and lower pull-off work are found to be responsible for lower sliding wear resistance of UFG steel.  相似文献   

3.
Grain refinement of bulk metals using severe plastic deformation (SPD) is a popular approach to improve both strength and toughness. In this paper, grain refinement of steel processed by warm multiaxial forging (MAF) and its mechanical behavior has been investigated. Coarse-grained, plain low carbon steel was deformed using MAF at 500 °C. Microstructural evolution is characterized using electron backscattered diffraction and mechanical behavior has been studied. Fraction of low angle grain boundaries (LAB) is observed to increase with strain up to total engineering strain of 1.3 thereafter it starts decreasing whereas, high angle grain boundaries showed just the opposite trend. It appears that initially grain subdivision takes place with imposition of strain thereby increasing the fraction of LAB. After a critical strain these LAB transforms into the high angle boundaries (HAB). The initial coarser grains of average 30 μm size subdivided into grains of the size finer than 0.5 μm. This has been confirmed by TEM micrographs. Improved tensile strengths and hardness values are obtained after warm MAF.  相似文献   

4.
B. Eghbali 《Materials Letters》2007,61(18):4006-4010
Torsion testing was carried out on a plain carbon steel to study ferrite grain refinement during warm deformation within two-phase (α + γ) region. Fine ferrite grains development was analyzed by using optical microscope and EBSD technique. Microstructural analysis shows that with increasing strain the new fine equiaxed ferrite grains surrounded by high angle boundaries start generating at the initial boundaries and the volume fraction of fine grains is increased and that of work hardened grains decreased. It was seen that there is no evidence of discontinuous dynamic recrystallization. Thus, it is suggested that the occurrence of continuous dynamic recrystallization is responsible for the formation of new fine ferrite grains.  相似文献   

5.
Deformed microstructure in AM60B Mg alloy under hypervelocity impact at a velocity of 5 km s−1 were investigated through optical microscope, scanning electron microscope and transmission electron microscope. The results show that four deformed zones around the crater can be classified based on the different deformed microstructure, including ultrafine grain zone, ultrafine grain and deformation twin zone, high and low density deformation twin zones. The dislocation slipping, deformation twins and ultrafine grains are the dominant components in the four deformed zones, and the evolution of deformed microstructure is speculated based on the deformed microstructure observed in four zones. Slipping and twinning play a critical role for the formation of the dynamic recrystallized grains, and twinning-induced rotational dynamic recrystallization mechanism is thought to be the main mechanism for the formation of ultrafine grains. The microhardness and dynamic compressive strength in different deformed zones were measured, and the high microhardness and yield strength in ultrafine grain zone should be attributed to the strain hardening and grain refining.  相似文献   

6.
1. IntroductionThe thermomechanical controlled processing(TMCP) of microalloyed steels has been employed fosome times in the production of plates and sheet material to optimize mechanical properties. The centrafeature of thermomechanically processed steel is the ul-trafine grain size in the final product. Therefore, theferrite grain refinement of structural steels has attractedconsiderable interest from engineering scientists due toits unique role of increasing both strength and toughnessDem…  相似文献   

7.
低碳钢超细晶铁素体的形成   总被引:1,自引:1,他引:0  
将含碳量(质量分数)为0.057%和0.18%的低碳钢在不同过冷度、变形温度、变形速率和变形量的条件下进行热模拟实验,研究了含碳量和热变形条件对超细晶粒形成的影响.结果表明,变形前快速冷却(20℃/s)至Ar3以上附近温度并进行超过50%变形量的变形,能强烈促进过冷奥氏体形变诱发铁素体相变,铁素体在奥氏体晶内平行的变形带上形核,并发生动态回复和再结晶,从而使组织细化.形变诱发的相变过程由碳的扩散所控制,当钢的含碳量比较高时,小过冷度、大变形量和中等变形速率有利于铁素体相变,晶界碳化物的析出能够抑制铁素体晶粒的长大,因而高碳含量钢表现出更好的细化晶粒效果.  相似文献   

8.
The study examined the microstructural and textural evolution of low carbon steel samples fabricated using a differential speed rolling (DSR) process with respect to the number of operations. For this purpose, the samples were deformed by up to 4-pass of DSR at room temperature with a roll speed ratio of 1:4 for the lower and upper rolls, respectively. The DSR technique applied to low carbon steel samples resulted in a microstructure composed of ultrafine ferrite grains, approximately 0.4 µm in size, after 4-pass with a high-angle grain boundary fraction of ~65 %. The microstructural features of the ferrite phase indicated the occurrence of continuous dynamic recrystallization, beginning with the formation of a necklace-like structure of ultrafine equiaxed grains around the elongated grains, which were formed in the early stages of deformation, and ending with ultrafine recrystallized grains surrounded by boundaries with high angles of misorientations. In the pearlite phase, the microstructural changes associated with DSR deformation were presented by the occurrence of bending, kinking, and breaking of the cementite lamellar plates. In addition, the evolution of texture after DSR processing was affected by shear deformation and rolling deformation, leading to the formation of a texture composed of fractions of components with shear texture orientations such as {110} 〈001〉 (Goss) and orientations close to {112} 〈111〉, in addition to rolling texture components consisting mainly of α-fiber and γ-fiber.  相似文献   

9.
Abstract

In the present study, wedge-shape sa mples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.  相似文献   

10.
采用多向锻造的方法研究室温下锻造道次对高纯铝组织的影响,并用三维DEFORM软件对实验过程进行模拟。结果表明:经3次多向锻造后,高纯铝试样横截面上形成1个X形的细晶区及4个粗晶区,随锻造道次增至9,细晶区的面积不断扩大,粗晶区的面积不断缩小,但细晶区与粗晶区的晶粒尺寸差异并未消除。当高纯铝试样心部的等效应变量达到2.5时,心部再结晶晶粒尺寸达到70μm,继续增加心部的等效应变至6.0,心部的晶粒不再随等效应变量的增加而细化,达到晶粒细化的极限。而当试样边部难变形区和自由变形区的等效应变量增至4.0时,其再结晶晶粒仍随等效应变量的增加而细化,未达到晶粒细化极限。这表明局部等效应变量及局部变形方式均是影响高纯铝晶粒细化的重要因素。  相似文献   

11.
A new route to fabricate ultrafine grained (UFG) ferritic steel sheets without severe plastic deformation is proposed in this article. A low-carbon steel sheet with a duplex microstructure composed of ferrite and martensite was cold-rolled to a reduction of 91% in thickness, and then annealed at 620–700 °C. The microstructure obtained through the process with annealing temperatures below 700 °C was the UFG ferrite including fine cementite particles homogenously dispersed. The grain size of ferrite matrix changed from 0.49 to 1.0 μm depending on the annealing temperature. Dynamic tensile properties of the produced UFG steels were investigated. The obtained UFG ferrite–cementite steels without martensite phase showed high strain rate sensitivity in flow stress. The UFG ferritic steels are expected to have high potential to absorb crash energy when applied to automobile body.  相似文献   

12.
This research investigated the mechanism responsible for the ductile to brittle transition temperature for the newly developed steels with a bimodal, ultrafine grain size, ferrite/cementite microstructure (UGF/C), which are produced by caliber warm rolling followed by annealing. The microstructure of the steel was characterised. Charpy impact tests were carried out in the temperature range from 373 K to 4.2 K and the fracture surfaces were analysed. The effective grain size responsible for the ductile-to-brittle transition temperature corresponded to the grain size of the large grain size regions. The mechanism of this phenomenon was attributed to the characteristics of the grain boundaries, as high angle grain boundaries are more effective in impeding cleavage crack propagation. The grain size of the large grain size regions was important in determining the DBTT because these grain boundaries were high angle grain boundaries, whereas the small gain size regions were dominated by the low angle grain boundaries.  相似文献   

13.
The microstructure evolution of the high carbon pearlitic steel after laser shock processing (LSP) with different laser pulse energy and high temperature annealing was investigated. After LSP, the cementite lamella were bent, fractured and broken into granules. Fragmentation and dissolution of the cementite lamella were enhanced by increasing the laser pulse energy. Results show that the ferrite lattice parameter increased due to carbon atom dissolution in the ferrite matrix, and the corresponding ferrite X-ray diffraction peaks shifted significantly towards the smaller diffraction angles. After annealing at 650°C for 30?min, an ultrafine duplex microstructure (ferrite+cementite) was formed on the surface. After LSP with a high energy, equiaxed ferrite grains were refined to 400?nm and the cementite lamella were fully spheroidised with the particle diameter of ~150?nm. The corresponding grain size of ferrite and cementite under low pulse energy was 500 and 300?nm respectively. After annealing, the ferrite peaks significantly shifted towards the higher diffraction angles, and the ferrite lattice parameter decreased. The microhardness initially increases after LSP and then slightly decreases after subsequent annealing but remained higher than without LSP.  相似文献   

14.
ZrC/奥氏体相界面形变诱导铁素体相变超细化机理   总被引:1,自引:0,他引:1  
利用Gleeble-1500热模拟试验机进行单轴热压缩实验,研究了含ZrC粒子的低碳钢在形变诱导相变过程中ZrC粒子对铁素体晶粒细化的影响及铁素体形核的基本特性.结果表明:一定粒径和体积分数的ZrC粒子弥散分布于基体相中时,能够阻碍位错的运动,形成集中形变区,加速形变诱导相变的进程,因而提高铁素体形核率,导致铁素体晶粒细化;ZrC/奥氏体相界面上形变诱导铁素体相变具有形核位置不饱和性、新生α相超细晶的特点;在应变条件下,铁素体晶粒在〈111〉方向择优取向,晶粒内部存在一定量的小角度晶界,由于铁素体动态再结晶的发生,组织进一步细化.ZrC/奥氏体相界面铁素体晶粒的超细化机理是形变诱导相变、铁素体动态再结晶及ZrC粒子弥散强化三者同时作用的结果.  相似文献   

15.
Abstract

Dynamic strain induced transformation (DSIT) is an interesting processing route to obtain ultrafine ferrite grains. In the present work, the effect of Nb on DSIT was investigated. Samples of low C–Mn steels, with and without Nb, were intensively deformed in hot torsion, aiming at the production of ultrafine ferrite grains. After soaking at 1200°C, the samples were cooled to 1100°C, submitted to hot torsion deformation to decrease the grain size and then cooled to 900, 850 or 800°C for further hot torsion deformation. In the steel without Nb, recrystallisation took place before enough deformation could be accumulated to induce ferrite formation, so DSIT would only take place at the lowest temperature investigated, 800°C. In the Nb steel, Nb addition delayed austenite recrystallisation, allowing DSIT ferrite to form at higher temperature than in the steel without Nb, 850°C.  相似文献   

16.
Abstract

A multiphase microstructure was obtained in a medium carbon microalloyed steel using two step cooling (TSC) from a lower than usual finish forging/rolling temperature (800–850°C). A low temperature anneal was then used to optimise the tensile properties. A multiphase microstructure (ferrite–bainite–martensite) resulted from forging as well as rolling. These were characterised using optical and scanning and transmission electron microscopy. X-ray diffraction, transmission electron microscopy and hardness measurements were used for phase identification. Tensile properties and work hardening curves were obtained for both the forged and the rolled multiphase variants. A Jaoul–Crussard (J–C) analysis was carried out on the tensile data to understand the basic mode of deformation behaviour. Rolling followed by the TSC process produced a uniform microstructure with a very fine grain boundary allotriomorphic ferrite, in contrast to the forged variety, which contained in addition coarse idiomorphic ferrite. The volume fraction of ferrite and its contiguity ratio in the rolled microstructure were greater than in the forged grade. The rolled microstructure exhibited a better combination of strength and toughness than that of the forged material. The rolled steel work hardened more than the forged variety owing to its fine, uniform (bainite–martensite and ferrite) microstructure. Retained austenite present in these steels underwent a strain induced transformation to martensite during tensile deformation. The J–C analysis of the work hardening rates revealed typical three stage behaviour in both varieties during tensile deformation.  相似文献   

17.
In this paper, 10 vol.% SiCp/AZ91 magnesium matrix composites were fabricated by stir casting technology. The as-cast ingots were forged at 420 °C with 50% reduction, and then extruded at 370 °C with the ratio of 16 at a constant ram speed of 15 mm/s. The results showed that the grains were refined during forging. A much finer grain size (∼2.7 μm) of composite matrix was obtained by subjecting the as-forged composite to hot extrusion. The fine SiC particulates restricted the dynamic recrystallized grain growth during the hot extrusion processing, resulting in a remarkable grain refinement. The yield stress and ultimate tensile stress were increased in the as-extruded composite, with the reasons of eliminated casting flaws, the uniform particle distribution and grains refinement. The grain refinement and uniform particle distribution caused an obvious increase in work hardening rate in the as-extruded composite during tensile deformation at room temperature.  相似文献   

18.
Abstract

Ultrafine grain sizes were produced using hot torsion testing of a 0.11C-1.68Mn-0.20Si wt- steel, with ultrafine ferrite <1 m nucleating intragranularly during testing by dynamic strain induced transformation. A systematic study was made of the effect of isothermal deformation temperature, strain level, strain rate, and accelerated cooling during deformation on the formation of ultrafine ferrite by this process. Decreasing the isothermal testing temperature below the Ae3 temperature led to a greater driving force for ferrite nucleation and thus more extensive nucleation during testing; the formation of Widmanstatten ferrite prior to, or early during, deformation imposed a lower temperature limit. Increasing the strain above that where ferrite first began 0.8 at 675C and a strain rate of 3 s1 increased the intragranular nucleation of ferrite. Strain rate appeared to have little effect on the amount of ferrite formed. However, slower strain rates led to extensive polygonisation of the ferrite formed because more time was available for ferrite recovery. Accelerated cooling during deformation followed by air cooling to room temperature led to a uniform microstructure consisting of very fine ferrite grains and fine spherical carbides located in the grain boundaries regions. Air cooling after isothermal testing led to carbide bands and a larger ferrite grain size.  相似文献   

19.
For an ultrafine grain ferrite/cementite (UGF/C) steel, the Charpy impact energy was measured at temperatures from 373 K to 4.2 K, and tensile tests were carried out at temperatures between 323 K and 77 K. For the steel with annealed microstructure, the ductile-to-brittle transition appearance temperature (DBTT) was lower than the Charpy transition temperature (CTT). With increasing annealing time at 873 K, the DBTT and the CTT increased, and the DBTT approached the CTT. The DBTT decreased with decreasing effective grain size. The effective grain size correlated to the grain size of the larger grain size peak in the distribution of grains with {1 0 0} planes. The annealed microstructures had higher yield strength for equivalent toughness (including upper shelf energy, DBTT and CTT) compared to the conventional ferrite/pearlite steel.  相似文献   

20.
Abstract

In the present research, a combined forward extrusion–equal channel angular pressing was developed and executed for the deformation of a plain carbon steel. In this method, two different deformation steps, including forward extrusion and equal channel angular pressing, take place successively in a single die. The deformation process was performed at different deformation start temperatures (800, 930 and 1100°C). Three-dimensional finite element simulation was used to predict the strain and temperature variations within the samples during deformation. With microstructural observations and the results of finite element simulation, the main grain refinement mechanisms were studied at different deformation temperatures. The results show that the forward extrusion–equal channel angular pressing is effective in refining the ferrite grains from an initial size of 32 μm to a final size of ~0·9 μm. The main mechanisms of grain refinement were considered to be strain assisted transformation, dynamic strain induced transformation and continuous dynamic recrystallisation, depending on the deformation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号