共查询到20条相似文献,搜索用时 15 毫秒
1.
A University and Industry collaborative research project was undertaken to evaluate the performance of as friction stir welded (FSW) and friction stir welded-superplastically formed Ti–6Al–4V alloy sheets. The purpose of this particular effort was to evaluate the tensile properties of friction stir welded and superplastically formed friction stir welded Ti–6Al–4V. Welds were produced out of both standard grain and fine grained titanium and tested in the as welded, stress relieved (SR) and superplastically formed (SPF) conditions. The preliminary results of the FSW and post FSW–SPF joint were found to be close to that of as received titanium with respect to strength, but elongations were decreased. 相似文献
2.
The α + β titanium alloy, Ti–6Al–4V, was friction stir welded at a constant tool rotation speed of 400 rpm. Defect-free welds were successfully obtained with welding speeds ranging from 25 to 100 mm/min. The base material was mill annealed with an initial microstructure composed of elongated primary α and transformed β. A bimodal microstructure was developed in the stir zone during friction stir welding, while microstructure in the heat affected zone was almost not changed compared with that in the base material. An increase in welding speed increased the size of primary α in the stir zone. The weld exhibited lower hardness than the base material and the lowest hardness was found in the stir zone. Results of transverse tensile test indicated that all the joints had lower strength and elongation than the base material, and all the joints were fractured in the stir zone. 相似文献
3.
A. R. Nasresfahani A. R. Soltanipur K. Farmanesh A. Ghasemi 《Materials Science & Technology》2017,33(5):583-591
Tool wear behaviour on microstructure and mechanical properties of friction stir welded zones of Ti–6Al–4V alloy was evaluated. SEM examination, EDS analysis and X-ray diffraction results indicated that severe wear of the tool is indicated by the presence of WC-Co particles in the stir zone at rotational speed of 630?rev?min?1 and travel speed of 8?mm?min?1. Micro-hardness, tensile tests and fractographical examinations also reflected that these particles make the material more brittle and reduce the mechanical strength by 40%. However at travel speed of 22?mm?min?1, tool wear is less, hardness distribution is more uniform and enhanced ductility and strength is achieved. 相似文献
4.
The effects of the main process variables on the stir zone microstructure in friction stir welds were investigated for Ti–6Al–4V. Welds were produced by employing varying welding speeds under a constant rotation speed or different rotation speeds at a constant welding speed. The stir zone microstructure was examined by optical microscopy and transmission electron microscopy. It was found that the stir zone microstructure was determined by the parameters controlling temperature and deformation history during the friction stir welding. A bimodal microstructure characterized by primary α and transformed β with lamellar α + β or a full lamellar microstructure composed of basket-weave α + β lamellae could be developed in the stir zone. The microstructural evolution mechanism in the stir zone was discussed. 相似文献
5.
Ti–6Al–4V alloy was subjected to friction stir processing at rotation rates of 400, 800 and 1200 rpm using a polycrystalline cubic boron nitride (pcBN) tool and tool wear at different travel distances was investigated. At high rotation rates of 800 and 1200 rpm, the greatest tool wear, including mechanical and chemical wear, occurred at the initial tool plunge point. Detailed microstructural examinations on the tool plunge point at 1200 rpm by transmission electron microscopy indicated that the “onion ring” structure in the stir zone was caused by a variation in the distribution of TiB particles. Two similar but not identical spatial phase sequences around BN particles, BN–TiB2–TiB–α-Ti (N) and BN–TiB2–TiB–transformed β-Ti (N), as well as Ti2N phase were identified. The reaction mechanism between the tool and the Ti matrix was discussed. Moreover, when the tool wear reached a steady-state condition, the effect of tool wear on the microstructure and mechanical properties of the stir zone was evaluated. A fully transformed β with a Widmanstatten structure was observed at all rotation rates and the average size of prior β grains increased with the rotation rate. The tool wear led to an increment in hardness and tensile strength but a loss of ductility of the stir zone. 相似文献
6.
Samples made of a super high strength aluminum alloy with high Zn content were friction stir welded with rotation rates of 350–950 rpm and welding speeds of 50–150 mm/min. The effect of welding parameters on the microstructure and mechanical properties was investigated. It was observed that the grain size of the nugget zones decreased with the increasing welding speed or the decreasing tool rotation rate. Most of the strengthening precipitates in the nugget zone were dissolved back and the intragranular and grain boundary precipitates in the heat affected zone coarsened significantly. The greatest ultimate tensile strength of 484 MPa and largest elongation of 9.4 were obtained at 350 rpm−100 mm/min and 350 rpm−50 mm/min, respectively. The ultimate tensile strength and elongation deteriorated drastically when rotation rate increased from 350 to 950 rpm at a constant welding speed of 100 mm/min. 相似文献
7.
The feasibility of dissimilar friction stir welding (FSW) in overlap configuration between Ti–6Al–4V alloy (Ti64) and AISI 304 austenitic stainless steels (304SS) was investigated. Sound joints were achieved when placing titanium as the upper workpiece. Joints were successfully produced by employing a welding speed of 1 mm/s and rotational speeds of 300 and 500 rpm. A lamellar microstructure was formed in the stir zone of Ti64, where grain size was found to increase with increasing rotational speed, and austenitic equiaxed grains were obtained near the interface of 304SS coupon. Energy dispersive X-ray spectroscopy (SEM-EDS) of the interface revealed a thin intermixed region and suggested intermetallic compound formation. Microhardness data in the titanium weld zone for both rotational speeds exhibited slightly lower values than the base material, with the lowest values in the heat affected zone, whereas the microhardness values in the stainless steel side around the weld center were found to be higher than those obtained for the base material. 相似文献
8.
High strength aluminium alloys generally present low weldability because of the poor solidification microstructure, porosity in the fusion zone and loss in mechanical properties when welded by fusion welding processes which otherwise can be welded successfully by comparatively newly developed process called friction stir welding (FSW). This paper presents the effect of post weld heat treatment (T6) on the microstructure and mechanical properties of friction stir welded 7039 aluminium alloy. It was observed that the thermo-mechanically affected zone (TMAZ) showed coarser grains than that of nugget zone but lower than that of heat affected zone (HAZ). The decrease in yield strength of welds is more serious than decrease in ultimate tensile strength. As welded joint has highest joint efficiency (92.1%). Post weld heat treatment lowers yield strength, ultimate tensile strength but improves percentage elongation. 相似文献
9.
In this study, mechanical behaviour and microstructural evolution in friction stir processing (FSP) of casting hypereutectic A390 aluminium alloy have been investigated. The mechanical behaviour of FSP samples was investigated by measuring the strain rate sensitivity using shear punch testing. The room-temperature shear punch tests were conducted at shear strain rates in the range of 10?4–10?1?s?1. The results indicate that the strain rate sensitivity index increases from about 0.015 to 0.120 for as-cast A390 after third FSP pass and then experiences a further growth in FSP passes. The increase in the grain size and CuAl2 intermetallic particle size result in a reduction in strain sensitivity index as well as shear strength after third FSP pass. 相似文献
10.
The aim of this study was to evaluate the microstructure, hardness and cyclic deformation behavior of electron beam welded dissimilar joints of Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding resulted in a significant microstructural change across the joint, with hexagonal close-packed (hcp) martensite α′ and orthorhombic martensite α″ in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) of Ti–6Al–4V side, and coarse β in the HAZ of Ti17 side. A characteristic asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was observed. The dissimilar joint exhibited a lower Young′s modulus and higher cyclic strain hardening exponent than both Ti–6Al–4V and Ti17 base metals (BMs), and had the monotonic and cyclic yield strengths lying in-between those of two BMs with higher values for Ti17 alloy. Both BMs and joint showed essentially symmetrical hysteresis loops and equivalent fatigue life, and exhibited cyclic stabilization at lower strain amplitudes up to 0.6%, while cyclic softening occurred after initial cyclic stabilization at higher strain amplitudes. The initial cyclic stabilization was shortened with increasing strain amplitude. In the Ti–6Al–4V BM fatigued at a high strain amplitude of 1.2%, a short initial cyclic hardening emerged, corresponding to the presence of twinning and its resistance to the dislocation movement. Fatigue failure of the dissimilar joint occurred in the HAZ of Ti17 side where the soft zone was present, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by typical fatigue striations. 相似文献
11.
Non-combustive Mg–9Al–Zn–Ca magnesium alloy was friction stir welded with rotation speeds ranging from 500 to 1250 rpm at a constant welding speed of 200 mm/min. Defect-free joints were successfully produced at rotation speeds of 750 and 1000 rpm. The as-received hot extruded material consisted of equiaxed α-Mg grains with β-Mg17Al12 and Al2Ca compounds distributed along the grain boundaries. Friction stir welding produced much refined α-Mg grains accompanied by the dissolution of the eutectic β-Mg17Al12 phase, while Al2Ca phase was dispersed homogeneously into the Mg matrix. An increase in rotation speed increased the α-Mg grain size but not significantly, while microstructure in the heat affected zone was almost not changed compared with the base material. The hardness tests showed uniform distributed and slightly increased harness in the stir zone. Results of transverse tensile tests indicated that the defect-free joints fractured at the base material, while longitudinal tensile tests showed that the strength of the defect-free welds was improved due to microstructural refinement and uniform distribution of intermetallic compounds. 相似文献
12.
Through an analysis on microstructure and high cycle fatigue (HCF) properties of Ti–6Al–4V alloys which were selected from literature, the effects of microstructure types and microstructure parameters on HCF properties were investigated systematically. The results show that the HCF properties are strongly determined by microstructure types for Ti–6Al–4V. Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure. Additionally, microstructure parameters such as the primary α (αp) content and the αp grain size in bimodal microstructures, the α lamellar width in lamellar microstructure and the α grain size in equiaxed microstructures, can influence the HCF properties. 相似文献
13.
M. A. Safarkhanian M. Goodarzi S. M. A. Boutorabi 《Journal of Materials Science》2009,44(20):5452-5458
An Al-4.5%Cu-1.5%Mg aluminum alloy with a T4 temper was friction stir welded, and the effect of the abnormal grain growth
on the tensile strength of joints was investigated. Abnormal grain growth usually happens during post weld heat treatment.
It is found that the tensile strength and elongation of the heat-treated joint will increase significantly if this phenomenon
completely happens in stir zone. On the other hand stable grains in the stir zone have no effect on the mechanical properties
of heat-treated joint. 相似文献
14.
5A02 aluminum alloy and pure copper were joined by friction stir welding (FSW). A defect-free joint was obtained when one of process parameters, i.e. the traverse speed was lowered from 40 mm/min to 20 mm/min. A good mixing of Al and Cu was observed in the weld nugget zone (WNZ). A large amount of fine Cu particles were dispersed in the upper part of the WNZ producing a composite-like structure. In the lower part, nano-scaled intercalations were observed and identified by transmission electron microscopy (TEM). These layered structures were subsequently confirmed as Al4Cu9 (γ), Al2Cu3 (ε), Al2Cu (θ), respectively. Formation of these microstructures caused an inhomogeneous hardness profile. Particularly, a distinct rise in hardness was noticed at the Al/Cu interface. Excellent metallurgical bonding between Al and Cu gave rise to good behaviors in the tensile and bending strength. 相似文献
15.
Aluminum matrix nanocomposites were fabricated via friction stir processing of an Al–Mg alloy with pre-inserted TiO2 nanoparticles at different volume fractions of 3%, 5% and 6%. The nanocomposites were annealed at 300–500 °C for 1–5 h in air to study the effect of annealing on the microstructural changes and mechanical properties. Microstructural studies by scanning and transmission electron microscopy showed that new phases were formed during friction stir processing due to chemical reactions at the interface of TiO2 with the aluminum matrix alloy. Reactive annealing completed the solid-state reactions, which led to a significant improvement in the ductility of the nanocomposites (more than three times) without deteriorating their tensile strength and hardness. Evaluation of the grain structure revealed that the presence of TiO2 nanoparticles refined the grains during friction stir processing while the in situ formed nanoparticles hindered the grain growth upon the post-annealing treatment. Abnormal grain growth was observed after a prolonged annealing at 500 °C. The highest strength and ductility were obtained for the nanocomposites annealed at 400 °C for 3 h. 相似文献
16.
《Materials Science & Technology》2013,29(5):903-908
AbstractThe microstructure of the weld was examined by light and electron microscopy (scanning and transmission). The various regions, i.e. thermomechanically affected zone, heat affected zone and unaffected base material, were studied in detail to better understand the microstructural evolution during friction stir welding and its impact on basic mechanical properties. The change in morphology of the strengthening phases reflected the relative temperature profile and the amount of deformation across the welded joint during the stir welding process. The centre of the weld was composed of fine grains and coarse particles identified mainly as MgZn2. In the thermomechanically and heat affected zones, the grain size was not uniform, and the strengthening phases filled the grain interiors, while grain boundaries were surrounded by precipitation free zones. The size of the strengthening phase decreased towards the base material. The hardness profile of the friction stir weld displayed the lowest hardness on the retreating side. Tensile properties of the weld itself were superior to those for material containing weld. 相似文献
17.
18.
The diffusion bonding of Ti–6Al–4V alloy and micro-duplex stainless steel was carried out in the temperature range of 850–1000 °C for 45 min in vacuum. The influence of bonding temperature on the microstructural development, micro-hardness and strength properties across the joint region was determined. The layer wise σ phase, λ + FeTi and λ + FeTi + β-Ti phase mixtures were observed at the bond interface when the joint was processed at 900 °C and above temperature. The maximum tensile strength of ∼520.1 MPa and shear strength of ∼405.5 MPa along with 6.8% elongation were obtained for the diffusion couple processed at 900 °C. Fracture surface observation in scanning electron microscopy (SEM) using energy dispersive X-ray spectroscope (EDS) demonstrates that, failure takes place through λ + FeTi phase when bonding was processed at 900 °C, however, failure takes place through σ phase for the diffusion joints processed at and above 950 °C. 相似文献
19.
Friction stir welding (FSW) was used to join Ti–6Al–4V alloy in air and under intense cooling conditions. The results show that the application of liquid nitrogen is beneficial in decreasing the peak temperature and in reducing the extent of the high-temperature region during welding, leading to a smaller stir zone (SZ). Intense cooling can lead to refined and homogeneous grains in the SZ, resulting in increased microhardness. The FSW joint produced with intense cooling had a tensile strength of 1020?MPa, which is nearly equivalent to that of the base material and is up to 2.6% higher than for the air-cooled joint. The fractographs for both types of joint were characterised by dimples, indicating that the fractures were ductile. 相似文献
20.
Linear friction welded Ti–6Al–4V was investigated in fatigue at various stress amplitudes ranging from the high cycle fatigue (HCF) to the low cycle fatigue (LCF) regime. The base material was composed of hot-rolled Ti–6Al–4V plate that presented a strong crystallographic texture. The welds were characterized in terms of microstructure using electron backscatter diffraction and hardness measurements. The microstructural gradients across the weld zone and thermomechanically affected zone of the linear friction welds are discussed in terms of the crystallographic texture, grain shape and hardness levels, relative to the parent material. The location of crack nucleation under fatigue loading was analyzed relative to the local microstructural features and hardness gradients. Though crack nucleation was not observed within the weld or thermomechanically affected zones, its occurrence within the base material in LCF appears to be affected by the welding process. In particular, by performing high resolution digital image correlation during LCF, the crack nucleation site was related to the local accumulation of plastic deformation in the vicinity of the linear friction weld. 相似文献