首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
地热能     
<正>地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达摄氏7000℃,而在80~100km的深度处,温度会降至摄氏650~1200℃。透过地下水的流动和熔  相似文献   

2.
地热能     
《节能与环保》2009,(4):56-56
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。  相似文献   

3.
舟丹 《中外能源》2014,(11):30-30
<正>我国的《可再生能源法》说明了可再生能源包括太阳能、风能、生物质能、地热能和海洋能等。实际上,可再生能源有两个来源,一个来自天上的太阳,太阳能、风能、生物质能和海洋能都源于太阳活动;另一个来自地球,地热能是来自地球深部不断向外散发的热。来自太阳的能量都受昼夜、气象等条件影响而变化,它们发出的电力需要"智能电网"来弥补其  相似文献   

4.
常规地热能可以从热岩和地下水自然共存的地方提取,这时源源冒出的是过热水或蒸汽(盖塞斯属于后一种情况)。但正如盖塞斯经验所强调的,地面下的可资利用的热量比带出地面的地下水的热量多得  相似文献   

5.
地热能利用     
地热能利用是指对地热水和地热蒸气的开发和利用。地热能利用可分为发电利用和直接利用。温度在150℃以上的高温地热,可用于发电及综合利用;中低温地热,可用于沐浴、孵化鱼卵,饲养牲畜,加温土壤,脱水加工,医疗等。  相似文献   

6.
人造地热能     
人造地热能(EGS)是为了解决全球暖化对于干净能源的大量需求而逐渐成为21世纪显学的一种新方法,最初概念70年代已经提出但是一直没有受到重视。构想为地热分布地区极为受限,于是有人提出采用深度钻孔技术于任何地方钻至靠近地底熔岩附近300度以上的区域,至少钻2井,一井注入冷水一井收回地热加热后的蒸气发电,如果成本允许钻更多回收井则可以减少散失蒸气;增加发电效能。  相似文献   

7.
<正>可分为地热发电和直接利用两大类。地热能是来自地球深处的可再生热能。它起源於地球的熔融岩浆和放射性物质的衰变。地热能是指其储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那麽  相似文献   

8.
一九八六年河北省科委下达秦皇岛市昌黎县的“地热旅游基地技术开发”星火计划项目,经三年努力,不仅全面完成了计划任务,而且在种植与养殖生产方面已有燎原之势,收到了良好的经济效益和社会效益。  相似文献   

9.
地热能利用     
地热能利用是指利用地下热能为人类服务。a)开发潜力较大的地热田一般出现在偏远的山区,它的可输送性比较低,故一般是使地热能就地转变成电能;b)直接向生产工艺流程供热;c)向生活设施供热,如地热采暖以及地热温室栽培等;d)农业用热,如土壤加温以及利用某些热水的肥效等;e)提取某些地热流体或热卤水中的矿物原料;f)医疗保健,这是人类最古老也是一直沿用到现在的医疗方法。地热浴对治疗风湿病和皮肤病有特效。  相似文献   

10.
地热能的合理利用   总被引:3,自引:1,他引:3  
从能源和环境保护的角度介绍了我国地热资源和目前的应用状况,分析了当前我国地热资源应用过程中需要解决的问题及解决方案,探讨了提高地热资源利用率的技术措施。  相似文献   

11.
Status of geothermal energy amongst the world's energy sources   总被引:1,自引:0,他引:1  
The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%). The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the “new renewables” (2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50–275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20–40% of the primary energy in 2050 and 30–80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2–10 US¢/kWh for geothermal and hydro, 5–13 US¢/kWh for wind, 5–15 US¢/kWh for biomass, 25–125 US¢/kWh for solar photovoltaic and 12–18 US¢/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh, and solar heating 3–20 US¢/kWh.  相似文献   

12.
The lithium-ion battery is one of the most promising technologies for energy storage in many recent and emerging applications. However, the cost of lithium-ion batteries limits their penetration in the public market. Energy input is a significant cost driver for lithium batteries due to both the electrical and thermal energy required in the production process. The drying process requires 45–57% of the energy consumption of the production process according to a model presented in this paper. The model is used as a base for quantifying the energy and temperatures at each step, as replacing electric energy with thermal energy is considered. In Iceland, it is possible to use geothermal steam as a thermal resource in the drying process. The most feasible type of dryer and heating method for lithium batteries would be a tray dryer (batch) using a conduction heating method under vacuum operation. Replacing conventional heat sources with heat from geothermal steam in Iceland, we can lower the energy cost to 0.008USD/Ah from 0.13USD/Ah based on average European energy prices. The energy expenditure after 15 years operation could be close to 2% of total expenditure using this renewable resource, down from 12 to 15% in other European countries. According to our profitability model, the internal rate of return of this project will increase from 11% to 23% by replacing the energy source. The impact on carbon emissions amounts to 393.4–215.1 g/Ah lower releases of CO2 per year, which is only 2–5% of carbon emissions related to battery production using traditional energy sources.  相似文献   

13.
14.
15.
地源热泵   总被引:1,自引:0,他引:1  
地源热泵技术是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能的空调技术。地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。由于全年地温波动小,冬暖夏凉,其季节性性能系数有着恒温热源热泵的特性,季节性平均性能系统较高。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。…  相似文献   

16.
17.
18.
19.
Junji Suyama 《Energy》1979,4(5):871-879
There are three categories of geothermal resources with huge resource bases: the hydrothermal convection system, the hot igneous system, and the regional conductive environment. However, under the present technical and economic condition, high temperature hydrothermal convection is the only commercially attractive resource for electric power generation, On the other hand, increasingly more attention is being paid to nonelectrical uses of moderate temperature geothermal resources.National and regional research efforts should be focused initially on the assessment and development of liquid-dominated hydrothermal resources, in order to establish confidence in geothermal energy as a viable energy option at the earliest possible time. With respect to the utilization problem of liquid-dominated resources, the development of cost-effective systems to use moderate-temperature resources for both electric and nonelectric applications would greatly expand the geothermal energy potential.Removal of the institutional uncertainties and legal barriers and encouragement by means of financial supports are necessary to stimulate the commercial activity of geothermal energy development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号