首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We prove two main results on how arbitrary linear threshold functions ${f(x) = {\rm sign}(w \cdot x - \theta)}$ over the n-dimensional Boolean hypercube can be approximated by simple threshold functions. Our first result shows that every n-variable threshold function f is ${\epsilon}$ -close to a threshold function depending only on ${{\rm Inf}(f)^2 \cdot {\rm poly}(1/\epsilon)}$ many variables, where ${{\rm Inf}(f)}$ denotes the total influence or average sensitivity of f. This is an exponential sharpening of Friedgut’s well-known theorem (Friedgut in Combinatorica 18(1):474–483, 1998), which states that every Boolean function f is ${\epsilon}$ -close to a function depending only on ${2^{O({\rm Inf}(f)/\epsilon)}}$ many variables, for the case of threshold functions. We complement this upper bound by showing that ${\Omega({\rm Inf}(f)^2 + 1/\epsilon^2)}$ many variables are required for ${\epsilon}$ -approximating threshold functions. Our second result is a proof that every n-variable threshold function is ${\epsilon}$ -close to a threshold function with integer weights at most ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2/3})}.}$ This is an improvement, in the dependence on the error parameter ${\epsilon}$ , on an earlier result of Servedio (Comput Complex 16(2):180–209, 2007) which gave a ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2})}}$ bound. Our improvement is obtained via a new proof technique that uses strong anti-concentration bounds from probability theory. The new technique also gives a simple and modular proof of the original result of Servedio (Comput Complex 16(2):180–209, 2007) and extends to give low-weight approximators for threshold functions under a range of probability distributions other than the uniform distribution.  相似文献   

2.
J. M. F. Chamayou 《Calcolo》1978,15(4):395-414
The function * $$f(t) = \frac{{e^{ - \alpha \gamma } }}{\pi }\int\limits_0^\infty {\cos t \xi e^{\alpha Ci(\xi )} \frac{{d\xi }}{{\xi ^\alpha }},t \in R,\alpha > 0} $$ [Ci(x)=cosine integral, γ=Euler's constant] is studied and numerically evaluated;f is a solution to the following mixed type differential-difference equation arising in applied probability: ** $$tf'(t) = (\alpha - 1)f(t) - \frac{\alpha }{2}[f(t - 1) + f(t + 1)]$$ satisfying the conditions: i) $$f(t) \geqslant 0,t \in R$$ , ii) $$f(t) = f( - t),t \in R$$ , iii) $$\int\limits_{ - \infty }^{ + \infty } {f(\xi )d\xi = 1} $$ . Besides the direct numerical evaluation of (*) and the derivation of the asymptotic behaviour off(t) fort→0 andt→∞, two different iterative procedures for the solution of (**) under the conditions (i) to (iii) are considered and their results are compared with the corresponding values in (*). Finally a Monte Carlo method to evaluatef(t) is considered.  相似文献   

3.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

4.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

5.
Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the integrals \(I^{(1)}[g]=\int ^b_a \frac{g(x)}{x-t}\,dx\) and \(I^{(2)}[g]=\int ^b_a \frac{g(x)}{(x-t)^2}\,dx\) . These integrals are not defined in the regular sense; \(I^{(1)}[g]\) is defined in the sense of Cauchy Principal Value while \(I^{(2)}[g]\) is defined in the sense of Hadamard Finite Part. With \(h=(b-a)/n, \,n=1,2,\ldots \) , and \(t=a+kh\) for some \(k\in \{1,\ldots ,n-1\}, \,t\) being fixed, the numerical quadrature formulas \({Q}^{(1)}_n[g]\) for \(I^{(1)}[g]\) and \(Q^{(2)}_n[g]\) for \(I^{(2)}[g]\) are $$\begin{aligned} {Q}^{(1)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2),\quad f(x)=\frac{g(x)}{x-t}, \end{aligned}$$ and $$\begin{aligned} Q^{(2)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2)-\pi ^2g(t)h^{-1},\quad f(x)=\frac{g(x)}{(x-t)^2}. \end{aligned}$$ We provided a complete analysis of the errors in these formulas under the assumption that \(g\in C^\infty [a,b]\) . We actually show that $$\begin{aligned} I^{(k)}[g]-{Q}^{(k)}_n[g]\sim \sum ^\infty _{i=1} c^{(k)}_ih^{2i}\quad \text {as}\,n \rightarrow \infty , \end{aligned}$$ the constants \(c^{(k)}_i\) being independent of \(h\) . In this work, we apply the Richardson extrapolation to \({Q}^{(k)}_n[g]\) to obtain approximations of very high accuracy to \(I^{(k)}[g]\) . We also give a thorough analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In our study of stability, we show that errors committed when computing the function \(g(x)\) , which form the main source of errors in the rest of the computation, propagate in a relatively mild fashion into the extrapolation table, and we quantify their rate of propagation. We confirm our conclusions via numerical examples.  相似文献   

6.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    7.
    The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

    8.
    We define a combinatorial checkerboard to be a function f : {1, . . . , m} d → {1,?1} of the form ${f(u_1,\ldots,u_d)=\prod_{i=1}^df_i(u_i)}$ for some functions f i : {1, . . . , m} → {1,?1}. This is a variant of combinatorial rectangles, which can be defined in the same way but using {0, 1} instead of {1,?1}. We consider the problem of constructing explicit pseudorandom generators for combinatorial checkerboards. This is a generalization of small-bias generators, which correspond to the case m = 2. We construct a pseudorandom generator that ${\epsilon}$ -fools all combinatorial checkerboards with seed length ${O\bigl(\log m+\log d\cdot\log\log d+\log^{3/2} \frac{1}{\epsilon}\bigr)}$ . Previous work by Impagliazzo, Nisan, and Wigderson implies a pseudorandom generator with seed length ${O\bigl(\log m+\log^2d+\log d\cdot\log\frac{1}{\epsilon}\bigr)}$ . Our seed length is better except when ${\frac{1}{\epsilon}\geq d^{\omega(\log d)}}$ .  相似文献   

    9.
    L. Rebolia 《Calcolo》1973,10(3-4):245-256
    The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

    10.
    We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

    11.
    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables $\mathcal{M}$ , with the same constraint C defined by a finite-state automaton $\mathcal{A}$ on each row of $\mathcal{M}$ and a global cardinality constraint $\mathit{gcc}$ on each column of $\mathcal{M}$ . We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the $\mathit{gcc}$ constraints from the automaton $\mathcal{A}$ . The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We also provide a domain consistency filtering algorithm for the conjunction of lexicographic ordering constraints between adjacent rows of $\mathcal{M}$ and (possibly different) automaton constraints on the rows. We evaluate the impact of our methods in terms of runtime and search effort on a large set of nurse rostering problem instances.  相似文献   

    12.
    To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing $\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s $ for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ?. This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range $\mathcal{R} \subset\mathrm{SE}(2)$ of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (x fin,y fin,θ fin) that can be connected by a globally minimizing geodesic starting at the origin (x in,y in,θ in)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and $\mathcal{R}$ in detail. In this article we
    • show that $\mathcal{R}$ is contained in half space x≥0 and (0,y fin)≠(0,0) is reached with angle π,
    • show that the boundary $\partial\mathcal{R}$ consists of endpoints of minimizers either starting or ending in a cusp,
    • analyze and plot the cones of reachable angles θ fin per spatial endpoint (x fin,y fin),
    • relate the endings of association fields to $\partial\mathcal {R}$ and compute the length towards a cusp,
    • analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold $(\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)$ and with spatial arc-length parametrization s in the plane $\mathbb{R}^{2}$ . Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,
    • present a novel efficient algorithm solving the boundary value problem,
    • show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),
    • show a clear similarity with association field lines and sub-Riemannian geodesics.
      相似文献   

    13.
    Gábor Wiener 《Algorithmica》2013,67(3):315-323
    A set system $\mathcal{H} \subseteq2^{[m]}$ is said to be separating if for every pair of distinct elements x,y∈[m] there exists a set $H\in\mathcal{H}$ such that H contains exactly one of them. The search complexity of a separating system $\mathcal{H} \subseteq 2^{[m]}$ is the minimum number of questions of type “xH?” (where $H \in\mathcal{H}$ ) needed in the worst case to determine a hidden element x∈[m]. If we receive the answer before asking a new question then we speak of the adaptive complexity, denoted by $\mathrm{c} (\mathcal{H})$ ; if the questions are all fixed beforehand then we speak of the non-adaptive complexity, denoted by $\mathrm{c}_{na} (\mathcal{H})$ . If we are allowed to ask the questions in at most k rounds then we speak of the k-round complexity of $\mathcal{H}$ , denoted by $\mathrm{c}_{k} (\mathcal{H})$ . It is clear that $|\mathcal{H}| \geq\mathrm{c}_{na} (\mathcal{H}) = \mathrm{c}_{1} (\mathcal{H}) \geq\mathrm{c}_{2} (\mathcal{H}) \geq\cdots\geq\mathrm{c}_{m} (\mathcal{H}) = \mathrm{c} (\mathcal{H})$ . A group of problems raised by G.O.H. Katona is to characterize those separating systems for which some of these inequalities are tight. In this paper we are discussing set systems $\mathcal{H}$ with the property $|\mathcal{H}| = \mathrm{c}_{k} (\mathcal{H}) $ for any k≥3. We give a necessary condition for this property by proving a theorem about traces of hypergraphs which also has its own interest.  相似文献   

    14.
    Dr. J. Wimp 《Computing》1974,13(3-4):195-203
    Two methods for calculating Tricomi's confluent hypergeometric function are discussed. Both methods are based on recurrence relations. The first method converges like $$\exp ( - \alpha |\lambda |^{1/3} n^{2/3} )for some \alpha > 0$$ and the second like $$\exp ( - \beta |\lambda |^{1/2} n^{1/2} )for some \beta > 0.$$ Several examples are presented.  相似文献   

    15.
    LetK be a field and letL ∈ K n × n [z] be nonsingular. The matrixL can be decomposed as \(L(z) = \hat Q(z)(Rz + S)\hat P(z)\) so that the finite and (suitably defined) infinite elementary divisors ofL are the same as those ofRz + S, and \(\hat Q(z)\) and \(\hat P(z)^T\) are polynomial matrices which have a constant right inverse. If $$Rz + S = \left( {\begin{array}{*{20}c} {zI - A} & 0 \\ 0 & {I - zN} \\ \end{array} } \right)$$ andK is algebraically closed, then the columns of \(\hat Q\) and \(\hat P^T\) consist of eigenvectors and generalized eigenvectors of shift operators associated withL.  相似文献   

    16.
    We show that the promise problem of distinguishing n-bit strings of relative Hamming weight \({1/2 + \Omega(1/{\rm lg}^{d-1} n)}\) from strings of weight \({1/2 - \Omega(1/{\rm \lg}^{d - 1} n)}\) can be solved by explicit, randomized (unbounded fan-in) poly(n)-size depth-d circuits with error \({\leq 1/3}\) , but cannot be solved by deterministic poly(n)-size depth-(d+1) circuits, for every \({d \geq 2}\) ; and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83) and provide an example where randomization buys resources. To rule out deterministic circuits, we combine Håstad’s switching lemma with an earlier depth-3 lower bound by the author (Computational Complexity 2009). To exhibit randomized circuits, we combine recent analyses by Amano (ICALP ’09) and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits explicit, we construct a new, simple pseudorandom generator that fools tests \({A_1 \times A_2 \times \cdots \times A_{{\rm lg}{n}}}\) for \({A_i \subseteq [n], |A_{i}| = n/2}\) with error 1/n and seed length O(lg n), improving on the seed length \({\Omega({\rm lg}\, n\, {\rm lg}\, {\rm lg}\, n)}\) of previous constructions.  相似文献   

    17.
    The factorization algorithm of Pollard generates a sequence in ? n by $$x_0 : = 2;x_{i + 1} : = x_i^2 - 1(\bmod n),i = 1,2,3,...$$ wheren denotes the integer to be factored. The algorithm finds an factorp ofn within \(0\left( {\sqrt p } \right)\) macrosteps (=multiplications/divisions in ? n ) on average. An empirical analysis of the Pollard algorithm using modified sequences $$x_{i + 1} = b \cdot x_i^\alpha + c(\bmod n),i = 1,2,...$$ withx 0,b,c,α∈? and α≥2 shows, that a factorp ofn under the assumption gcd (α,p-1)≠1 now is found within $$0\left( {\sqrt {\frac{p}{{ged(\alpha ,p - 1}}} } \right)$$ macrosteps on average.  相似文献   

    18.
    LetA be any real symmetric positive definiten×n matrix, and κ(A) its spectral condition number. It is shown that the optimal convergence rate $$\rho _{SOR}^* = \mathop {\min }\limits_{0< \omega< 2} \rho (M_{SOR,\omega } )$$ of the successive overrelaxation (SOR) method satisfies $$\rho _{SOR}^* \leqslant 1 - \frac{1}{{\alpha _n \kappa (A)}}, \alpha _n \approx \log n.$$ This worst case estimate is asymptotically sharp asn→∞. The corresponding examples are given by certain Toeplitz matrices.  相似文献   

    19.
    Given a DNF formula f on n variables, the two natural size measures are the number of terms or size s(f) and the maximum width of a term w(f). It is folklore that small DNF formulas can be made narrow: if a formula has m terms, it can be ${\epsilon}$ -approximated by a formula with width ${{\rm log}(m/{\epsilon})}$ . We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ${\epsilon}$ -approximated by a width w DNF with at most ${(w\, {\rm log}(1/{\epsilon}))^{O(w)}}$ terms. We combine our sparsification result with the work of Luby & Velickovic (1991, Algorithmica 16(4/5):415–433, 1996) to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic ${n^{\tilde{O}({\rm log}\, {\rm log} (n))}}$ time algorithm that computes an additive ${\epsilon}$ approximation to the fraction of satisfying assignments of f for ${\epsilon = 1/{\rm poly}({\rm log}\, n)}$ . The previous best result due to Luby and Velickovic from nearly two decades ago had a run time of ${n^{{\rm exp}(O(\sqrt{{\rm log}\, {\rm log} n}))}}$ (Luby & Velickovic 1991, in Algorithmica 16(4/5):415–433, 1996).  相似文献   

    20.
    In this paper, we give the first construction of a pseudorandom generator, with seed length O(log n), for CC0[p], the class of constant-depth circuits with unbounded fan-in MOD p gates, for some prime p. More accurately, the seed length of our generator is O(log n) for any constant error ${\epsilon > 0}$ . In fact, we obtain our generator by fooling distributions generated by low-degree polynomials, over ${\mathbb{F}_p}$ , when evaluated on the Boolean cube. This result significantly extends previous constructions that either required a long seed (Luby et al. 1993) or could only fool the distribution generated by linear functions over ${\mathbb{F}_p}$ , when evaluated on the Boolean cube (Lovett et al. 2009; Meka & Zuckerman 2009). En route of constructing our PRG, we prove two structural results for low-degree polynomials over finite fields that can be of independent interest.
    1. Let f be an n-variate degree d polynomial over ${\mathbb{F}_p}$ . Then, for every ${\epsilon > 0}$ , there exists a subset ${S \subset [n]}$ , whose size depends only on d and ${\epsilon}$ , such that ${\sum_{\alpha \in \mathbb{F}_p^n: \alpha \ne 0, \alpha_S=0}|\hat{f}(\alpha)|^2 \leq \epsilon}$ . Namely, there is a constant size subset S such that the total weight of the nonzero Fourier coefficients that do not involve any variable from S is small.
    2. Let f be an n-variate degree d polynomial over ${\mathbb{F}_p}$ . If the distribution of f when applied to uniform zero–one bits is ${\epsilon}$ -far (in statistical distance) from its distribution when applied to biased bits, then for every ${\delta > 0}$ , f can be approximated over zero–one bits, up to error δ, by a function of a small number (depending only on ${\epsilon,\delta}$ and d) of lower degree polynomials.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号