首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《硬质合金》2017,(1):7-13
分别采用两种工艺制备的Fsss粒度相近的WC粉末为原料,在不同球磨时间下制备WC-10%Co-0.3%Cr_3C_2-0.5%TaC试样于1 450℃下烧结,对比两种合金的微观结构和常规性能。结果表明:采用粒度分布较窄、不含WC团聚颗粒的WC粉末为原料,经10 h球磨就能得到微观组织结构均匀的超细硬质合金;采用粒度分布较宽、含有大量WC团聚颗粒的WC粉末为原料,需要50 h球磨才能得到微观结构较为均匀的超细硬质合金,球磨时未被破碎的WC团聚颗粒烧结时会长大为WC晶粒团聚体,或者是粗大WC晶粒,会降低合金的抗弯强度值;原始粉末粒度组成对超细硬质合金的矫顽磁力、密度和硬度影响较小。  相似文献   

2.
采用经球磨扁平化处理的W粉末为原料,添加适量Co、C(碳黑)、成型剂及纳米W粉制备板状晶硬质合金,研究了烧结温度、时间和添加纳米W粉,对板状晶硬质合金显微组织结构和性能的影响。结果表明,球磨预处理中颗粒W粉末可获得扁平化程度高的薄片状W粉末,以其为原料制备的WC-12%Co(质量分数)板状晶合金相对密度达97%,合金硬度呈现出明显的各向异性;添加纳米W粉或提高烧结温度、延长烧结时间,均有利于压坯烧结收缩致密化,生成更多的板状WC晶粒。  相似文献   

3.
将原位合成WC-6Co复合粉末采用干袋式冷等静压压制成型(压制压力1×10~8 Pa、保压时间15 s),将压制好的坯料采用低压烧结炉烧结(烧结温度1360℃、烧结时间40 min、加压5 MPa、保温保压时间20 min),烧结制备超细YG6硬质合金,对合金的形貌、金相组织及物理力学性能进行分析。结果表明:原位合成WC-6Co复合粉末制备的超细YG6硬质合金,晶粒异常长大,WC平均晶粒尺寸为0.8μm,硬度HV_(30)为(21500±100) MPa,较传统超细YG6X硬度高。再将WC-6Co复合粉末采用滚动湿磨、压力式喷雾干燥、掺成型剂、挤压成型、低压烧结等工序制备超细YG6硬质合金,研究不同晶粒长大抑制剂配比、球磨时间、挤压压力、烧结温度对合金性能的影响。结果表明:添加0.3%VC、0.8%Cr_3C_2(质量分数),湿磨48 h,挤压压力24 MPa,烧结温度1340℃,制备的超细YG6硬质合金WC晶粒均匀,无异常长大的WC晶粒,WC平均晶粒度尺寸0.4μm,呈多边形,外形较圆。强度、硬度最高,抗弯强度TRS为(2250±20) MPa、硬度HV30为(22600±100) MPa。断口形貌为沿晶断裂,沿WC与WC晶界断裂或WC与Co晶界断裂。  相似文献   

4.
《硬质合金》2019,(6):406-413
采用瞬时烧结法确定了超细晶WC-4%Co硬质合金在烧结过程中矫顽磁力突变温度,据此设计了该合金两步烧结工艺曲线。采用传统烧结方法和两步烧结方法制备超细晶WC-4%Co合金,研究了两步烧结方法对超细硬质合金的微观组织、力学性能和切削性能的影响规律。结果表明:超细晶WC-4%Co合金矫顽磁力突变的温度点在1 450℃以上。采用传统烧结方法制备的超细晶WC-4%Co合金中WC晶粒的三维形貌为多台阶层状结构,WC晶粒尺寸分布范围宽;两步烧结方法制备的WC-4%Co合金中WC的晶粒三维形貌发育为单层和三棱柱混合结构,WC晶粒尺寸分布范围窄。由于细颗粒WC溶解-析出行为的充分进行,两步烧结方法制备的合金硬度略微下降,断裂韧性有较大幅度提高。铣削试验结果表明:两步烧结制备的超细晶WC-4%Co合金木工铣刀的的抗崩刃性能及铣削寿命高于传统方法烧结的合金产品。  相似文献   

5.
化学包裹粉工艺制备粗晶粒WC-Co硬质合金   总被引:3,自引:0,他引:3  
以费氏粒度为8.06μm的WC粉与Co(NO3)2·6H2O为原料,采用N(CH2CH2OH)3(TEA)为还原剂制备WC-12%Co(质量分数)包裹粉,以包裹粉为原料制备WC-12%Co硬质合金。采用扫描电镜观察包裹粉与合金中WC晶粒的立体形貌,采用X射线衍射仪分析粉末的物相组成,采用比表面积分析仪分析TEA还原产物多孔泡沫Co的比表面积,采用金相显微镜观察合金的组织结构。结果表明:包裹粉中Co为纯fcc高温相结构,呈多孔泡沫状纳米组装结构形式包裹在WC粉末表面;WC-12%Co合金组织结构均匀,平均晶粒度为4.8μm,WC晶粒结晶完整、呈规则多面体形状。  相似文献   

6.
《硬质合金》2019,(1):29-37
为制备具有超高强度的硬质合金,以Cr_3C_2为抑制剂,使用超细WC粉末,配置不同Cr_3C_2含量的WC-12%Co混合料,以酒精为介质行星球磨48 h,干燥后压制成45 mm×6.5 mm×6.5 mm的试样,然后在低压烧结炉中1 430℃烧结成型。采用SEM、XRD、万能材料试验机、自动钴磁仪等研究了Cr_3C_2添加量对WC-12%Co超细硬质合金组织和性能的影响。结果表明:随着Cr_3C_2含量的增加,WC-12%Co合金平均晶粒尺寸减小,合金孔隙率增加且孔隙尺寸增大,硬度提高,比饱和磁化强度减小,矫顽磁力增大;合金抗弯强度提高。当Cr_3C_2添加量为0.6%时,合金抗弯强度达到4.3 GPa,继续添加Cr_3C_2,合金中出现缺碳相,抗弯强度急剧降低。  相似文献   

7.
以WC-6%Ni硬质合金为研究对象,采用不同球磨时间制备了5组合金试样,通过对烧结后合金磁、力学性能的检测及显微结构观察,分析研究了球磨时间对WC-6%Ni硬质合金的微观结构及其性能的影响.结果表明:球磨时间对WC-6%Ni硬质合金的微观结构和性能影响明显,过短的球磨时间导致合金中存在粗大WC晶粒,适当延长球磨时间可使WC晶粒得到细化并获得微观结构均匀的合金,但过长的球磨时间则会导致合金中粗WC晶粒的再次出现.随着球磨时间的增加,抗弯强度、硬度、矫顽磁力均随之经历先上升到峰值后下降的过程;而球磨时间对WC-6%Ni合金的密度影响很小.当球磨时间为36 h时,WC-6%Ni硬质合金具有最小的WC平均晶粒度和相对均匀的微观结构,合金抗弯强度、硬度及矫顽磁力出现峰值,分别为2 250 MPa、89.4 HRA、4.9 kA/m.  相似文献   

8.
金益民 《硬质合金》2012,29(3):146-150
对市售16μmWC进行风力分级,得到了粗中细三种粒级的粉末,分析了原粉、分级粉的供应态和研磨态费氏粒度、粒度分布等特性,比较了用4种粉末制备的WC-10%Co的合金特性。结果表明:分级粉的均匀性都有改善;粗粉费氏粒度是细粉的2倍,研磨态粒度则相差很小;粉末的碳含量是随分级粉粒度变小而增高。4种粉末制备的合金的密度、硬度、磁力、钴磁差别不大,分级粉的抗弯强度则随着粒度变细而提高,Fsss供/Fsss研的值越小,合金强度越高,比值为3.1的细粉制备的合金的抗弯强度比其值为6.2的粗粉合金的抗弯强度提高29%,且金相组织中的WC和Co相最为均匀。  相似文献   

9.
本文采用亚微米WC粉和纳米Co粉、亚微米WC粉和高能球磨后具有纳米晶组织的微米级Co粉这两种具有不同粒径匹配的混合粉末作为原料粉末,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金。对不同原料粉末的SPS过程及烧结试样的显微组织和性能进行了系统的对比分析。实验结果表明,以两种混合粉末为原料均获得了平均晶粒尺寸在200nm以下的超细硬质合金材料,其中,采用亚微米WC粉和高能球磨的微米级Co粉利用SPS技术制备的材料相对密度达到98%以上,硬度达到HRA94.5,断裂韧性达到13.50MPa•m1/2,表明具有优良的综合性能。而采用亚微米WC粉和纳米Co粉利用SPS技术制备出的超细晶硬质合金的组织均匀性和性能较差。根据SPS技术的特殊烧结机理,对采用不同粒径匹配和结合状态的WC和Co混合粉末的SPS致密化机制进行了分析。  相似文献   

10.
在1450℃下通过低压烧结制备5种0.83~15.03μm不同WC粉末粒度的WC-15%Fe-5%Ni(质量分数)硬质合金,并通过SEM、XRD、EDS、力学性能测试仪、磨损试验机和电化学工作站研究WC粉末粒度对合金的显微组织和性能的影响。结果表明:随WC粉末粒度的减小,合金的WC晶粒尺寸减小,抗弯强度和硬度升高,断裂韧性降低,耐磨性能提高,耐酸性溶液腐蚀性能变差;当WC粒度较大时,合金的断裂方式主要为穿晶断裂;当WC粒径较小时,断裂方式主要为沿晶断裂;当WC粉末粒度为1.31μm时,硬质合金的综合性能最好,抗弯强度、硬度、断裂韧性、磨损率和自腐蚀电流密度分别达到2717 MPa、960 MPa、10.7 MPa·m~(1/2)、6.986003×10~(-7)mm~3/(N·m)和3.43698×10~(-5) A/cm~2。  相似文献   

11.
等离子球磨“碳化烧结一步法”制备WC-Co硬质合金有利于板状晶WC的形成和形态控制。本文进一步研究了等离子球磨W-C-Co复合粉末的组织演变,着重考察原始W粉粒径和烧结温度对WC-10%Co硬质合金组织、性能的影响。结果表明,等离子球磨使W颗粒显著呈片状,并增加其中位错等缺陷,提高粉末中的变形储能,同时增加了W/C反应界面,均有利于WC板状晶的生成;随着原始W粉粒径增加,等离子球磨所制备的层片状聚集体的片径越大,其生成的板状WC晶粒也越大,板状WC晶粒的定向排列程度也越高;随着烧结温度增加,WC晶粒的长径比和板状WC晶粒的定向排列程度有所提高。当原始W粉粒径为2.5μm、烧结温度1 440℃时,所制备的WC-10%Co硬质合金样品垂直于压制方向截面的横向断裂强度、硬度和断裂韧性分别为3 542 MPa、14.896 GPa、16.73 MPa·m1/2;平行于压制方向截面的硬度和断裂韧性为13.975 GPa、15.06 MPa·mm1/2。  相似文献   

12.
通过加入板状WC晶种制备含板状WC晶粒的WC-10%Co和WC-20%Co硬质合金,研究了加入板状WC晶种对两种硬质合金显微组织和性能的影响。结果表明,加入板状WC晶种后硬质合金中的WC晶粒具有明显的板状特征,WC-20%Co中的板状WC晶粒比WC-10%Co多且尺寸大。少量晶种的加入对WC-10%Co和WC-20%Co硬质合金密度基本无影响,但两者的硬度和抗弯强度都有所增加,特别是抗弯强度分别提高了12%和11%。  相似文献   

13.
分别采用单一WC粉球磨和采用两种粒度不同WC粉混合球磨的制备工艺制取3批相同配碳量、WC平均晶粒度相近的WC-6%Co粗晶硬质合金,通过分析合金WC晶粒的粒度分布,以及合金的矫顽磁力(Hc)和断裂韧性(KIC),研究不同制备工艺对合金WC晶粒的粒度分布、矫顽磁力、断裂韧性的影响。结果表明:不同制备工艺对合金的WC晶粒的粒度分布、钴相分散均匀性及断裂韧性有明显的影响。WC平均晶粒度相近时,采用两种WC粉末混合球磨工艺与采用一种WC粉末球磨工艺制取的合金相比,WC晶粒的粒径离差系数分别降低8.9%、15.6%,WC晶粒分布更均匀,合金矫顽磁力提高0.2、0.4 kA/m,合金韧性提升2.5%、10.8%。  相似文献   

14.
在细晶硬质合金原料粉末中添加少量4μm和11μm的WC粉末模拟合金中的晶粒一般夹粗和异常长大,研究粗晶WC含量及尺寸对WC-10%Co细晶硬质合金组织与性能的影响。结果表明:添加2%~8%的4μmWC粉末的合金,合金中的粗晶WC零星分布,粗晶尺寸约4~10μm,粗晶面积分数约0.29%~1.42%;添加2%~8%的11μmWC粉末的合金,合金中的夹粗现象非常明显,粗晶WC大于10μm,粗晶面积分数约0.99%~5.03%,呈现较明显的双峰组织。粗晶WC的粒度和含量影响WC-10%Co细晶硬质合金的性能,当参比原料粉末中添加相同规格的WC粉末时,随着添加量的增加,磁力、硬度、横向断裂强度、抗压强度逐渐下降,断裂韧性逐渐增加。添加2%的4μmWC粉末的WC-10%Co细晶合金,粗晶WC尺寸小于10μm且均匀分布,每平方毫米粗晶个数约为438,粗晶面积分数为0.29%,综合性能可达到未含夹粗WC合金的性能。  相似文献   

15.
以中颗粒原生WC粉、含有微量Ti元素的电解WC粉末及Co粉为原料,采用粉末冶金的方法分别制备原生WC-8%Co合金及电解WC-8%Co。在原生WC-8%Co中分别添加不同含量的Ti元素来探讨该元素对WC-8%Co合金微观结构与机械性能的影响,其中Ti元素以TiC的形式加入。测量合金的矫顽磁力、密度、硬度、抗弯强度及冲击韧性,使用金相显微镜、扫描电镜及X射线能谱仪对合金的微观结构进行分析。结果表明:电解WC-8%Co的抗弯强度与冲击韧性明显低于原生WC-8%Co合金。添加了微量TiC的所有WC-8%Co合金的硬度均大于原生WC-8%Co合金的硬度,且随着Ti含量的增加,合金的强度与冲击韧性呈现先降低后增加再降低的趋势。在电解WC-8%Co合金及添加TiC的合金中明显发现了第三相,随着TiC含量的增加,合金中的第三相由粗大状逐渐变成较小的近环状,第三相分布更均匀。  相似文献   

16.
《硬质合金》2020,(3):240-247
以WC-7%Co-3%Ni硬质合金为研究对象,WC-10%Co硬质合金为对比标样,研究球磨时间对WC-7%Co-3%Ni硬质合金的组织和性能的影响。研究表明,随着球磨时间的增加,WC-7%Co-3%Ni硬质合金的粘结相分布逐渐均匀,WC晶粒变细,钴磁降低,矫顽磁力升高,硬度升高,抗弯强度升高,断裂韧性降低。与WC-10%Co硬质合金相比,WC-7%Co-3%Ni硬质合金的WC晶粒更细,并且有较多"钝化态"的WC晶粒。在球磨22 h时,WC-7%Co-3%Ni硬质合金的硬度、抗弯强度和断裂韧性分别为89.9 HRA、3 973 N/mm~2、13.41 kN/mm~(3/2),WC-10%Co硬质合金的分别为90.3 HRA、2 626 N/mm~2、12.77 kN/mm~(3/2),前者在抗弯强度和断裂韧性方面具有明显的优势。  相似文献   

17.
超细硬质合金中晶粒非均匀长大机理   总被引:2,自引:2,他引:0  
袁红梅 《硬质合金》2012,29(3):131-135,140
采用市售的粒度为0.8μm的WC粉末和粒度为1.6μm的Co粉制备了WC-10%Co超细硬质合金,通过金相显微镜﹑扫描电子显微镜观察了不同烧结温度下制备的试样WC晶粒形貌,对超细晶粒硬质合金非均匀长大现象及机理进行了研究。结果表明:粉末湿磨后的粗大颗粒在烧结过程中起晶核作用,是引起晶粒非均匀长大的关键因素。固相烧结时,烧结体中细小颗粒受到张力的作用发生旋转,当其取向与邻近的大颗粒取向一致时,形成共格界面,以粗大晶粒为核心以并合的方式非均匀长大;液相烧结时,细小晶粒溶解并优先地在大晶粒的某些低能量晶面如(0001)和(1010)面析出,引起晶粒异常长大。本研究中,当烧结温度达到1 410℃时,WC晶粒可异常长大为接近20μm的粗大晶粒。  相似文献   

18.
以超细WC粉末和超细WC-6Co复合粉末为原料,添加VC/Cr3C2作为晶粒长大抑制剂,同时进行配碳,采用高能球磨和气压强化烧结制备晶粒度小于0.5μm的WC-0.5Co超细硬质合金,研究了不同VC/Cr3C2添加量及配碳量对其组织与性能的影响。结果表明:VC/Cr3C2有效抑制了烧结过程中WC晶粒的长大,显著提高了WC-0.5Co超细硬质合金的硬度。当VC/Cr3C2添加量为0.73%(质量分数,下同)时,合金的硬度(HV0.05)最高,达到32 658 MPa;同时一定的配碳量有利于控制合金中的脱碳,提高合金性能,当配碳量为0.2%时,WC-0.5Co-0.73VC/Cr3C2合金的综合力学性能最好,断裂韧性为6.935 MPa·m1/2,维氏硬度(HV0.05)为32 216 MPa。  相似文献   

19.
采用粉末冶金方法制备了WC-8%Co硬质合金试样,经氢气烧结后,利用钴磁测试仪、强度测试仪、电子显微镜和金相显微镜分别对试样的钴磁和抗弯强度进行测定、对试样断口和金相缺陷进行观察。研究了WC-8%Co硬质合金抗弯强度与碳量(相对磁饱和)、金相缺陷(B类孔隙)之间的关系。结果表明:将试样碳含量及孔隙度控制在一定的范围内,可以使试样抗弯强度保持在较高的水平,当试样相对磁饱和为88%~92%,B类孔隙为B00时,合金显微组织中WC晶粒较为均匀,无异常长大情况,WC-8%Co硬质合金抗弯强度可达3 286 N/mm2;同时,抗弯强度值的大小随孔隙度的增多而下降。另外,氢气烧结后经HIP处理可以有效消除WC-8%Co硬质合金中的孔隙缺陷,从而提高合金抗弯强度,经HIP处理的试样的强度比正常样的强度高出2.3%。  相似文献   

20.
以W粉、Co粉和碳黑为原料,通过球磨、压制成形及微波反应烧结制备WC-6Co硬质合金。采用XRD、SEM、密度计和维氏硬度计等研究微波反应烧结温度、升温速率、保温时间和W粉粒度4个因素对硬质合金组织与性能的影响。结果表明:选用粒度为1.3μm的W粉为原料,当温度大于1100℃时,W即可被C完全碳化生成WC;当温度为1300℃时合金致密性较好,维氏硬度(HV_(30))与断裂韧性(W_k)分别为1999N/mm~2和8.51MPa/m~(1/2),继续提高温度至1400℃时合金性能无明显变化。烧结温度越低、升温速率越大、保温时间越短,合金残留孔隙越多,导致维氏硬度与断裂韧性性能下降。当微波反应烧结温度为1300℃、升温速率100℃/min和保温时间10 min时制备的WC-6Co硬质合金微观组织均匀和综合性能最佳。选用粒度为27.0μm的W粉为原料按照最佳工艺烧结制备出WC-6Co硬质合金,并与平均粒度1.3μm的W粉制备的合金进行对比发现粗W粉颗粒制备的合金中存在W_2C,微波反应烧结工艺参数与W粉平均粒度相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号