首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
苏继龙 《复合材料学报》2015,32(5):1517-1526
为了研究手性蜂窝复合材料的振动特性与其振动传播带隙之间的关系,首先,建立了该种材料离散多自由度的夹杂-韧带振动力学模型,该模型考虑了其内嵌夹杂的局部振动与由微结构韧带连接的节点环之间的弹性耦联及诱发共振模态。然后,重点研究了微结构元件之间的耦联程度和微结构元件的尺寸参数对材料吸振带隙低频段和高频段的影响,并结合有限元方法对模型进行了验证分析。结果表明:除柔性包覆的夹杂以外,耦联诱发振动、节点环和韧带的材料及尺寸参数都对手性蜂窝复合材料的固有振动频率产生显著影响,从而控制带隙的位置和带宽。随着节点环内、外弹性耦联程度的减小,夹杂的模态频率将控制带隙的低频段,且随着夹杂质量的增大,低频段的频率降低;高频段由韧带振动表征;当节点环内、外弹性耦联程度增大时,带隙的低频段对韧带和框架的模态更加敏感,从而出现比夹杂模态频率更低的带隙。无论弹性耦合程度强弱,当韧带和节点环的厚度减小时,材料第三阶较高的包覆层变形频率将被相对更低的韧带振动频率取代。所得结论可为小尺寸、低频宽带隙手性蜂窝型隔振材料的设计研究提供理论指导。  相似文献   

2.
压电材料的机电耦合系数通常由谐振及反谐振频率之间的相对间隔确定。常用的IEEE标准计算公式,是由描述理想无损压电振子的电行为方程推导得出的。本文结出了压电材料的固有损耗产生的谐振及反谐振频率的偏移及由此引起的标准公式的误差。代替以往分析时常用的等效电路方法,本文采用把损耗考虑在内的严格的压电振子导纳或阻抗模型。分析结果表明:由测得的谐振子及反谐振频率用标准公式得出的耦合系数小于材料的固有耦合系数;  相似文献   

3.
根据微波电路及谐振腔电磁场基础理论,建立了双间隙耦合输入腔的等效电路模型,模型考虑了频率偏谐,外观品质因数失配以及电子注电导的影响。推导出间隙电压计算公式和输入端口匹配时腔体外观品质因数与腔体品质因数的关系。分别利用高频软件(HFSS)及粒子模拟软件(MAGIC3D)建立了仿真模型,进行了冷腔及电子注模拟,分析了电子注的电子负载效应对腔体参数的影响。理论计算与仿真与结果一致,证明了等效电路模型的准确性。  相似文献   

4.
Approximate formulas including losses to predict the electrical impedance of a thin unloaded piezoelectric plate around antiresonant frequencies of the thickness modes have been derived. To do so, a total loss factor is defined that includes both mechanical and electrical losses. Complex electrical impedance measurements on a lead metaniobate and four PZT-type materials between 2 and 50 MHz have been performed. The total loss factors were deduced from both the peak real impedance and from the -6 dB bandwidth of the real impedance peak. Results for fundamental and harmonic thickness modes on thin plates are discussed and the five materials are compared. It is found that for these piezoceramics the total loss factor is well approximated by a linear function of frequency. Finally, a frequency-dependent loss factor is included in the KLM equivalent circuit and it is shown that the theoretical impedance curves obtained with this model are in good agreement with measurements.  相似文献   

5.
为有效控制特定频段的噪声,基于Helmholtz共振腔阵列,通过Helmholtz共振腔短管位置的控制,设计了一种新型的局域共振型声学超材料。利用COMSOL Multiphysics软件求得新型声学超材料的能带图和传递损失曲线,并与具有单一方向开口的Helmholtz共振腔阵列的传递损失曲线进行对比;同时,为分析新型声学超材料的带隙形成机理,求得了其在带隙频率范围内的声压分布云图。通过试验测试了新型声学超材料的吸声性能。结果表明:新型声学超材料的能带图中产生了2段较窄带隙和1段较宽带隙,在带隙频率范围内,声学超材料传递损失出现峰值;第1带隙和第2带隙较窄,原因是单个Helmholtz共振腔局域共振,声波能量消耗少;第3带隙较宽,原因是Helmholtz共振腔与其周期排列形成的外部波导联合共振吸声,消耗大量声波能量。试验测试结果与仿真计算结果较为吻合,新型声学超材料可有效控制1 300~1 500 Hz和1 500~2 000 Hz频率范围内的噪声。研究结果表明,所设计的新型局域共振型声学超材料可有效实现中低频减振降噪,为声学超材料在中低频的降噪控制研究提供了新的思路。  相似文献   

6.
Vibrational motion of a harmonic oscillator was investigated with a focused continuous-wave (cw) CO2 Doppler lidar at 9.1-microm wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation. For vigorous vibration of the oscillator, the observed spectra may be indicating nonlinear motion.  相似文献   

7.
A method for measuring electric or magnetic anisotropy at microwave frequencies is described. It is based on the effect produced by an anisotropic sample placed inside a square resonant cavity, on two originally degenerate and mutually independent modes. A coupling between the modes is created and, at the same time, the degeneracy is lifted and two distinct resonant frequencies appear. The theory of these effects is presented for the case of uniaxial anisotropic dielectrics. Experiments carried out with samples simulating anisotropy yielded results in good agreement with the theoretical predictions.  相似文献   

8.
An electromagnetically coupled feed arrangement is proposed for simultaneously exciting multiple concentric ring antennas for multi-frequency operation. This has a multi-layer dielectric configuration in which a transmission line is embedded below the layer containing radiating rings. Energy coupled to these rings from the line beneath is optimised by suitably adjusting the location and dimensions of stubs on the line. It has been shown that the resonant frequencies of these rings do not change as several of these singlefrequency antennas are combined to form a multi-resonant antenna. Furthermore, all radiators are forced to operate at their primary mode and some harmonics of the lower resonant frequency rings appearing within the frequency range are suppressed when combined. The experimental prototype antenna has three resonant frequencies at which it has good radiation characteristics.  相似文献   

9.
A method for designing frequencies and modes in ultrasonic transducers above the very-high-frequency (VHF) range is required for ultrasonic non-destructive evaluation and acoustic mass sensors. To obtain the desired longitudinal and shear wave conversion loss characteristics in the transducer, we propose the use of a c-axis zig-zag structure consisting of multilayered c-axis 23° tilted ZnO piezoelectric films. In this structure, every layer has the same thickness, and the c-axis tilt directions in odd and even layers are symmetric with respect to the film surface normal. c-axis zig-zag crystal growth was achieved by using a SiO(2) low-temperature buffer layer. The frequency characteristics of the multilayered transducer were predicted using a transmission line model based on Mason's equivalent circuit. We experimentally demonstrated two types of transducers: those exciting longitudinal and shear waves simultaneously at the same frequency, and those exciting shear waves with suppressed longitudinal waves.  相似文献   

10.
Ring resonator for lasers with annular gain media   总被引:1,自引:0,他引:1  
Ehrlichmann D  Habich U  Plum HD 《Applied optics》1994,33(30):6919-6924
A ring resonator for lasers with annular gain media is presented. The resonator consists of two annular mirrors. While the radiation is reflected back and forth between the two annular mirrors, diffraction effects induce an additional azimuthal radiation flux. Output coupling is obtained through a decentered coupling aperture on the circumference of one of the two mirrors. The azimuthal radiation flux permits the extraction of optical power from the whole gain volume through the coupling aperture. The azimuthal radiation flux can revolve in two directions. The associated modes are degenerate, and random jumping between unidirectional and bidirectional operation is observed. Unidirectional operation has been stabilized but remains very sensitive to mirror alignment. High extraction efficiencies have been demonstrated experimentally with this resonator with a diffusion-cooled CO(2) laser and 2 times diffraction-limited beams have been obtained. An empty resonator model that shows the effect of edge diffraction at the coupling aperture on the resonator modes is also given.  相似文献   

11.
Based on the electric dipole moment (EDM) model of free oscillating electrons inside a single metallic nanoparticle (MNP), a comprehensive methodology is presented in the paper for calculating the equivalent circuit elements associated with an MNP. To find out the passive circuit elements for the MNP, the electromagnetic (EM) power flows are calculated by deriving the relaxation damping, radiation outflow, host matrix EM coupling, and applied signal interaction. The law of conservation of energy is then used to compute the extended oscillatory equation motion of a spherical MNP. The resonant behavior of a single MNP is represented by a lumped resonant circuit model, where the circuit parameters RLC are derived from the equation of motion of the EDM and EM near-field energy outside the MNP. Finally, equivalent circuit of a linearly equispaced MNPs plasmon wire is modeled as a voltage-controlled voltage source by using the nearest surface plasmon interactions.   相似文献   

12.
The transverse vibration of piezoceramic rectangular thin plates is investigated theoretically and experimentally using the Ritz's method incorporated with the defined equivalent constants. The equivalent constants are derived by comparing the characteristic equations of transverse resonant frequencies between isotropic and piezoceramic disks. By replacing the Poisson's ratio and flexural rigidity with the equivalent constants, the well-known Ritz's method can be used to investigate the transverse vibration of piezoceramic rectangular plates. Two different types of boundary conditions - clamped-free-free-free (CFFF) and clamped-free-clamped-free (CFCF) - are analyzed in this paper. For the experimental measurement, two optical techniques - amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV) - are used to validate the analytical results. Both the transverse vibration modes and resonant frequencies of piezoceramic rectangular plates are obtained by the AF-ESPI method. Numerical calculations using the finite-element method (FEM) are performed, and the results are compared with the theoretical analysis and experimental measurements. Excellent agreements are obtained for results of both resonant frequencies and mode shapes. According to the theoretical calculations with different equivalent Poisson's ratios, resonant frequency variations versus aspect ratios ranging from 0.1 to 10 also are discussed for the first several modes in the work.  相似文献   

13.
The transverse vibration of piezoceramic rectangular thin plates is investigated theoretically and experimentally using the Ritz's method incorporated with the defined equivalent constants. The equivalent constants are derived by comparing the characteristic equations of transverse resonant frequencies between isotropic and piezoceramic disks. By replacing the Poisson's ratio and flexural rigidity with the equivalent constants, the well-known Ritz's method can be used to investigate the transverse vibration of piezoceramic rectangular plates. Two different types of boundary conditions-clamped-free-free-free (CFFF) and clamped-free-clamped-free (CFCF)-are analyzed in this paper. For the experimental measurement, two optical techniques-amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV)-are used to validate the analytical results. Both the transverse vibration modes and resonant frequencies of piezoceramic rectangular plates are obtained by the AF-ESPI method. Numerical calculations using the finite-element method (FEM) are performed, and the results are compared with the theoretical analysis and experimental measurements. Excellent agreements are obtained for results of both resonant frequencies and mode shapes. According to the theoretical calculations with different equivalent Poisson's ratios, resonant frequency variations versus aspect ratios ranging from 0.1 to 10 also are discussed for the first several modes in the work.  相似文献   

14.
At SRON we are developing Frequency Domain Multiplexing for the read-out of superconducting transition edge sensor microcalorimeters for future X-ray astrophysical missions. We will report on the performance of Goddard Space Flight Center pixels under AC bias in the MHz frequency range. Superconducting flux transformers are used to improve the impedance matching between the low ohmic TESs and the SQUID. We connected 5 pixels to the LC filters with resonant frequencies ranging between 1 and 5 MHz. For X-ray photons of 6 keV we measured a best X-ray energy resolution of 3.6 eV at 1.4 MHz, consistent with the integrated Noise Equivalent Power. In addition, we improved the electrical circuit by optimizing the coupling ratio of the impedance matching transformer. In addition, we improved electrical circuit for impedance matching; modified transformer coupling ratio. As a result, we got the integrated noise equivalent power resolution of 2.7 eV at 2.5 MHz. A characterization of the detector response as a function of the AC bias voltage, bias frequency and the applied magnetic field is presented.  相似文献   

15.
A procedure for designing an electrically small microstrip patch antenna (MPA) is developed, wherein the length of a side of the MPA is reduced to significantly less than a half-wavelength. The MPA is loaded with a resonant circuit equivalent to that of a left-handed transmission line to artificially increase the effective wavelength of the device, thus creating a resonance equivalent to, but at a lower frequency than the unloaded {10} mode. The field distribution in the loaded MPA remains relatively unperturbed, unlike the {0} mode case that attempts to decrease the size by introducing a shorting-post; consequently, very low cross-polarisation behaviour is observed. The theory to predict the full spectrum of resonant frequencies of the antenna is developed, with finite-difference time-domain simulations used to finalise the antenna design. Finally, an electrically small ((lambda/6)times(lambda/4)) and thin (相似文献   

16.
针对声波测井压电换能器的多频点阻抗匹配技术展开研究,首先采用多模态等效电路精确描述了换能器的导纳特性;然后通过分析多模态阻抗匹配理论,设计电感-电容复合阻抗匹配网络,并结合换能器等效电路进行参数优化和电路仿真。实验表明,相比于换能器没有阻抗匹配的测试结果,该阻抗匹配技术可大幅提高换能器在谐振频率附近多个频率处的有功功率,频带内的有功功率平均提高了30倍,从而改善换能器的激励带宽和激励效率,提高测井仪器的适应性、探测深度和分辨率。  相似文献   

17.
Guo Z  Quan H  Pau S 《Applied optics》2006,45(4):611-618
We characterize planar microcavities in whispering-gallery mode optical resonances. The microcavity consists of a waveguide and a microdisk, and a nanoscale gap separates the waveguide and the microdisk. The devices can be fabricated on Si-based thin films by using conventional microelectronics techniques. To characterize these types of cavity, we study a broad range of resonator configuration parameters including the size of the microdisk, the width of the gap, and the waveguide dimensions. The finite-element method is used for solving Maxwell's equations. The electric fields and the energy density distributions are obtained and compared between the on-resonance and off-resonance situations. A brilliant ring with a strong electric field and a high-energy density is found inside the periphery of the microdisk under first-order resonance. While under second-order resonance, there are two bright rings, and the light intensity in the inner ring is stronger than that in the outer ring. The resonant frequencies and their free spectral ranges are predominantly determined by the size of the microdisk. The gap effect on the resonant frequencies is observable, although it is minor. The gap strongly affects the full width at half-maximum (FWHM), finesse, and quality factor of the resonances. With an increase in the gap width from 100 to 300 nm, both the Q value and finesse increase substantially, while the FWHM decreases. The waveguide width has a visible influence on the Q value, FWHM, and finesse as well.  相似文献   

18.
There are several well-known methods of measuring the Q of a resonant circuit, each with its limitations. Errors are introduced into measurements of high-Q values due to loading effects and radiation losses. A theoretical basis for the development of a Q meter which will not load a high-Q resonant circuit has been established. This new type of Q meter will use variable-width pulse excitation in lieu of sinusoidal excitation and will use elapsed-time Q-measurement techniques. It is seen that if the width of the exciting pulse is known, the resonant frequency of the resonant circuit can be directly determined. A Q meter using this approach will actually yield more information about a resonant circuit than can be determined using presently standard-type Q meters and will yield this information well beyond the Q and frequency capabilities of today's Q meters.  相似文献   

19.
The effect of connecting a rotating ring joint on the frequency of a passive contactless surface acoustic wave resonant sensor with the combined use of a model based on connected transmission lines and its equivalent electric circuit with lumped elements is analyzed. The considerable reduction in the dependence of the frequency of the sensor on the angle of rotation of the shaft and the reduction in the error of measurements carried out on the shaft when both rotating ring joints are completely symmetrically connected are demonstrated.  相似文献   

20.
The resonant behaviour and the size reduction capabilities of the Minkowski fractal dipole antenna are investigated. The antenna is analysed at each resonant frequency by considering the radiation efficiency and the fractional bandwidth. Besides, a method for deriving the approximate positions of the resonant frequencies of the Minkowski dipole at each fractal iteration is proposed. The presented analysis is based on the inductive circuit model and is validated by simulations. Moreover, in order to quantify the advantages provided by the Minkowski geometry, the proposed study performs a comparison with the generalised Koch dipole in terms of fractal dimension and lacunarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号