首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hydrodesulfurization (HDS) of sour crude oil is an effective way to address the corrosion problems in refineries, and is an economic way to process sour crude oil in an existing refinery built for sweet oil. In the current study, the HDS of Siberian crude oil was carried out in a slurry reactor. The Co-Mo, Ni-Mo, and Ni-W catalysts supported on γ-Al2O3 were compared at the temperature of 340℃ and the pressure of 4.5 MPa. The HDS activity follows the order of Co-Mo > Ni-Mo > Ni-W at a high concentration of H2S, and the difference between Co-Mo and Ni-Mo becomes insignificant at a low concentration of H2S. The influence of reaction temperature 320-360℃ and reaction pressure 3-5.5 MPa was investigated, and both play a positive role in the HDS reaction. A kinetic model over Ni-Mo/Al2O3 in the slurry reactor was established. The activation energy is estimated as 60.34 kJ·mol-1; the orders of sulfur components and hydrogen partial pressure are 1.43 and 1.30, respectively. The kinetic parameters are compared with those in a trickle-bed reactor, implying that the mass transfer is greatly enhanced in the slurry reactor. The back mixing effect is present in the slurry reactor and can be reduced by a multi-stage design, which would lead to higher reactor efficiency in industrial application.  相似文献   

2.
Hydrodesulfurization (HDS) of sour crude oil is an effective way to address the corrosion problems in refineries, and is an economic way to process sour crude oil in an existing refinery built for sweet oil. In the current study, the HDS of Siberian crude oil was carried out in a slurry reactor. The Co–Mo, Ni–Mo, and Ni–W catalysts supported on γ-Al2O3 were compared at the temperature of 340 °C and the pressure of 4.5 MPa. The HDS activity follows the order of Co–Mo > Ni–Mo > Ni–W at a high concentration of H2S, and the difference between Co–Mo and Ni–Mo becomes insignificant at a low concentration of H2S. The influence of reaction temperature 320–360 °C and reaction pressure 3–5.5 MPa was investigated, and both play a positive role in the HDS reaction. A kinetic model over Ni–Mo/Al2O3 in the slurry reactor was established. The activation energy is estimated as 60.34 kJ·mol−1; the orders of sulfur components and hydrogen partial pressure are 1.43 and 1.30, respectively. The kinetic parameters are compared with those in a trickle-bed reactor, implying that the mass transfer is greatly enhanced in the slurry reactor. The back mixing effect is present in the slurry reactor and can be reduced by a multi-stage design, which would lead to higher reactor efficiency in industrial application.  相似文献   

3.
以传统固相烧结法制备的不稳定的层状K2Ti2O5为前驱体, 直接将钛酸钾晶须进行离子交换得到具有纳微复合结构的TiO2载体, 等体积浸渍法制备出MoO3/TiO2催化剂, 运用SEM、XRD、BET、TEM等技术手段对载体和催化剂进行表征, 并考察了该TiO2复合结构负载催化剂的加氢脱硫催化活性。SEM和XRD分析显示:该纳微米复合结构是由纳米颗粒与微米晶须构成的特殊结构, 拥有不同形貌和尺寸的TiO2却具有相同的锐钛矿相。与单独TiO2纳米粒子和TiO2晶须相比, TiO2复合结构负载催化剂表现出更佳的脱硫催化能力, 在温度310℃、压力2.1 MPa、体积空速6 h-1、氢/油体积比600条件下, 催化剂表现出优异的DBT脱硫性能。  相似文献   

4.
汪怀远  肖博  王池嘉  程小双  蒋凤 《化工学报》2015,66(7):2514-2520
以静电纺丝法制备TiO2纳米纤维(TiO2(NF))和TiO2-氧化石墨(GO)复合纳米纤维(TiO2(NF)-GO)加氢脱硫催化剂的载体,采用等体积浸渍法制备NiMo/TiO2(NF)和NiMo/TiO2(NF)-GO催化剂,运用N2吸附-脱附、X射线衍射、XPS、TEM、Raman光谱和NH3程序升温脱附等表征手段对载体和催化剂进行表征分析,并考察掺杂不同含量GO对催化剂加氢脱硫性能的影响。实验结果表明,当GO/TiO2(NF) 质量分数为0.5%时,复合载体的中强酸增加得最多,在温度280℃、氢气分压2.0 MPa、体积空速4 h-1,氢油体积比400相当温和条件下,对应的催化剂表现出优异的加氢脱硫性能。  相似文献   

5.
A commercial Co---Mo/Al2O3 catalyst was labeled with the radioisotope 35S in hydrodesulfurization (HDS) of 35S-labeled dibenzothiophene (35S-DBT) in a high-pressure flow reactor at 50 kg/cm2. Then, HDS of 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) or sulfur exchange of H2S were carried out on the labeled catalyst at 50 kg/cm2 and 260–360°C. The amounts of labile sulfur participating in the reaction were determined from the radioactivity of 35S---H2S released from the 35S-labeled catalyst. In the HDS reactions, the amount of labile sulfur participating in the reaction decreased in the order: DBT> 4-MDBT> 4,6-DMDBT. In the sulfur exchange reaction with H2S, the adsorption of H2S on the catalyst reached saturation above a H2S partial pressure of 0.36 kg/cm2. It was suggested that the release of H2S from the labile sulfur may be the rate determining step of the HDS reaction.  相似文献   

6.
以三苯基膦为磷化剂,采用原位磷化法制备具有较高分散性的Ni_2P/Al_2O_3-SAPO-11催化剂,通过低温N2吸附-脱附、XRD、HRTEM、NH_3-TPD和Py-IR等对催化剂晶相结构、微观形貌和酸性质进行表征。以正十四烷为模型化合物,考察SAPO-11含量及工艺条件对正十四烷加氢异构化性能的影响。结果表明,最佳SAPO-11质量分数为40%,优化的工艺条件为:反应温度360℃,反应压力2 MPa,体积空速1. 5 h-1,氢烃体积比300,该条件下,正十四烷转化率为78. 1%,异构化选择性为89. 2%。  相似文献   

7.
Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul-fur. Process intensification for deep HDS could be implemented by developing new active c...  相似文献   

8.
利用小型固定床加氢实验装置,将煤焦油和其加氢后的尾油混合,在温度(360~420)℃、压力(13~15)MPa、氢油体积比(1 500~1 700)∶1和液体体积空速0.25 h-1条件下进行加氢处理,所得产品切割得到的汽油馏分、柴油馏分和尾油馏分,分别占产物质量的16.12%、78.83%和5.05%,且产品中硫、氮含量很低,汽油中硫含量16.7μg·g~(-1),氮含量36μg·g~(-1),柴油中硫含量102.6μg·g~(-1),氮含量97μg·g~(-1),可用作清洁燃料。结果表明,尾油循环在煤焦油加氢过程中对煤焦油具有稀释作用,不仅减轻了设备负荷,同时也可以提高汽油和柴油收率。因此,以煤焦油加氢尾油循环加氢是一种高效、绿色环保制备燃料油的方法。  相似文献   

9.
汪国辉  刘辉  陈晓蓉  梅华 《工业催化》2014,22(9):709-714
采用等体积浸渍法制备CeO2改性Ni/γ-Al2O3催化剂,通过BET、XRD、H2-TPR和SEM等对催化剂结构及物化性能进行表征,考察Ni-CeO2/γ-Al2O3催化剂对顺酐催化加氢制备丁二酸酐催化性能的影响。结果表明,引入适量CeO2可提高催化剂活性组分Ni的分散度,增加催化剂比表面积,提高催化剂热稳定性。采用负载CeO2质量分数5%的Ni-CeO2/γ-Al2O3催化剂,在反应温度120 ℃、反应压力2.0 MPa和空速0.6 h-1条件下,顺酐转化率为99.5%,丁二酸酐选择性为99.4%。  相似文献   

10.
以NNY分子筛和Hβ分子筛为酸性组分,以γ-Al2O3为载体原料、Ni-W为金属组分、P为改性剂,采用较合适的配比利用挤条成型法和等体积饱和浸渍法制备较优的中油型加氢裂化催化剂,并针对此催化剂,在恒压15 MPa条件下,反应温度、空速和氢油体积比的变化对加氢裂化过程中馏分油转化率、产品分布、中油选择性和HDS、HDN效果的影响进行探究。结果表明,随着反应温度升高,转化率增大,产品分布向轻组分偏移,脱硫率和脱氮率增加,但中油选择性降低;随着空速增大,转化率、脱硫率和脱氮率均降低,中油选择性增大;随着氢油体积比增大,转化率、脱硫率和脱氮率先增大后趋于稳定,产品分布和中油选择性基本不变。在反应压力15 MPa、反应温度380 ℃、空速0.7 h-1和氢油体积比1 500∶1条件下,转化率84.6%,中油选择性91.3%,生成油硫含量9.28 μg·g-1,氮含量1.46 μg·g-1。  相似文献   

11.
以中低温煤焦油360℃的馏分油为原料,Ni-Mo/γ-Al2O3为催化剂,在小型固定床单管加氢反应器上进行加氢实验。在压力13 MPa、空速0.4 h-1、氢油体积比1 700∶1和反应温度370℃工艺条件下进行催化加氢反应,通过对原料油和加氢产物的GC-MS的检测结果分析,确定了酚类、萘类、联苯类和菲类化合物的加氢转化路径,得到煤焦油馏分油中主要化合物的加氢反应网络。  相似文献   

12.
采用共沉淀法制备CuZnAl复合催化剂,借助N2吸附-脱附、TG-DTA、XRD和H2-TPR对催化剂进行表征分析,在固定床反应器中考察反应条件对催化剂性能的影响以及在优选条件下的催化剂活性稳定性.结果表明,CuZnAl复合催化剂具有介孔特征,比表面积和孔径较大,前驱体经500℃活化,阴离子基团分解完全,晶体成型,热稳...  相似文献   

13.
采用TG-DSC技术研究了钼酸铵和LaHY在空气气氛中的失重行为,考察了钼酸铵与LaHY的固相反应机理,用XRD、BET和NH3-TPD对其物相结构、比表面积和表面酸性进行了表征。结果表明,(NH46Mo7O24·4H2O分解产生的表相Mo物种借助固相反应以金属-氧簇定位在LaHY分子筛体相笼中形成nMoOx·LaHY单相复合体,引起分子筛的晶胞收缩,晶胞参数a0减小,比表面积下降。制备的nMoOx·LaHY较相应LaHY分子筛的弱酸中心变化较小,中强酸中心增加,强酸中心略有减少,总酸量增加。以质量分数为0.6%的二苯并噻吩/正癸烷溶液为模型反应物,评价了制备的nMoOx·LaHY催化剂的加氢脱硫性能。负载Mo质量分数为5.0%制得的nMoOx·LaHY催化剂在反应压力4.0 MPa,反应液时空速20 h-1,H2/原料液体积比500:1的实验条件下,290℃和310℃的二苯并噻吩加氢脱硫转化率达到了56.38%和88.79%,较相应负载Mo质量分数为20.0%制备的MoO3/Al2O3催化剂分别提高了约12个百分点和28个百分点,表现出了较高的二苯并噻吩加氢脱硫反应活性。  相似文献   

14.
为满足FCC原料预处理的要求,开发了一种高脱硫、脱氮活性的FCC原料预加氢处理催化剂。该催化剂以氟改性氧化铝为载体,Ni Mo为活性组分,比表面积为169 m2·g-1,孔容为0.31 m L·g-1,平均孔径为6.5 nm,最可几孔径为3.35 nm和8.00 nm,孔径(4~10)nm占71%,具有大孔容、高比表面积和活性金属组分分散性好等特点。在100 m L固定床加氢试验装置上,以中国石化青岛炼化公司的高硫低氮混合蜡油和江苏新海石化有限公司的高硫高氮焦化蜡油为原料进行加氢活性评价。结果表明,在反应温度370℃、反应压力10.0 MPa、空速1.0 h-1和氢油体积比700∶1条件下,高硫低氮混合蜡油的脱硫、脱氮率分别为98.0%和96.5%,对高硫高氮焦化蜡油的脱硫、脱氮率分别为93.2%和90.0%。催化剂表现出原料适应性强,能有效脱除原料中的硫氮化合物,具有较高的加氢活性。  相似文献   

15.
采用SSY型分子筛、不同硅铝比Beta分子筛与大孔氢氧化铝干胶混捏制备SSY-Beta-Al_2O_3载体,等体积浸渍法制备Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂,采用BET、Py-IR、XRD、NH_3-TPD对制备的催化剂及载体进行表征。在100 mL固定床加氢装置上,工业Ni-Mo型柴油加氢精制催化剂与Ni-W/SSY-Beta-Al_2O_3加氢转化催化剂级配装填,以劣质催化裂化柴油为原料,对加氢转化催化剂进行活性评价。结果表明,随着Beta分子筛硅铝比的增加,催化剂表面的L酸中心先减少后增多,B酸中心先增加后减少,催化剂的弱酸酸量先增多后减少,中强酸与强酸酸量变化不明显。在氢油体积比700∶1、反应压力8.0 MPa、精制段反应温度360℃,体积空速1.25 h^(-1),转化段反应温度400℃,体积空速1.35 h^(-1)的条件下,CYB-3催化剂加氢转化产品液相收率高达97.73%,汽油馏分收率63.72%,辛烷值91.66,柴油馏分收率33.69%,十六烷值比原料提高8.96,凝点小于-35℃。  相似文献   

16.
采用固定床法考察了原料异丁烷中乙硫醇、甲醇、正丁烷和1-丁烯等杂质对Pt-Sn-K/Al2O3催化剂上异丁烷脱氢制异丁烯反应性能影响,反应产物使用气相色谱进行分析.实验结果表明,在异丁烷脱氢制异丁烯正常反应条件下,即温度580℃、压力0.1MPa、进料组成H2/i-C4H10(体积比)= 2、总空速GHSV = 2000h-1、GHSV(i-C4H10)= 667h-1,乙硫醇、甲醇、正丁烷和1-丁烯对Pt-Sn-K/Al2O3催化剂的异丁烷转化率和异丁烯选择性均有较大的影响,且杂质含量越高,对催化剂的转化率和选择性影响越大.并对杂质造成催化剂失活的原因进行了分析.  相似文献   

17.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了载体焙烧温度、催化剂焙烧温度、还原温度、还原压力对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 升高载体焙烧温度有利于催化剂表面上活性物种的分散, 但焙烧温度过高会导致催化剂烧结, 适宜的载体焙烧温度为550℃。当还原温度为500~550℃时, 磷化镍主要以Ni12P5相形式存在, 且随着还原温度的升高, Ni12P5的衍射峰强度逐渐增强, 还原温度为700℃时, 可得到单一的Ni2P物相。载体焙烧温度为550℃, 催化剂焙烧温度为500℃, 还原温度为700℃, 常压还原制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性。在360℃、3.0MPa、氢油体积比500、液时体积空速2.0h-1的条件下, 反应4h时, DBT转化率为99.5 %。  相似文献   

18.
陈维苗  丁云杰  薛飞  宋宪根  吕元 《工业催化》2014,22(11):841-846
采用共沉淀法制备Cu/MnO/Al2O3催化剂,运用N2吸附-脱附、XRD、XRF和H2-TPR等对其进行表征,并用于乙酸甲酯加氢制乙醇反应,考察共沉淀加料方式对催化剂结构及其催化性能的影响。结果表明,共沉淀时采用的加料方式显著影响制备的Cu/MnO/Al2O3催化剂的织构性质、CuO晶粒大小、还原性能和化学组成,这些因素共同作用决定了催化剂在乙酸甲酯加氢反应中的催化性能。其中,反加法制得的催化剂Cu和Mn组分含量相对比值接近理论值,且具有较高的比表面积和较佳的还原性能,因而表现出最佳的催化性能,在反应温度200 ℃、压力6.5 MPa、空速0.6 h-1和氢酯物质的量比50条件下,乙酸甲酯转化率和乙醇选择性分别达98.9%和98.1%。  相似文献   

19.
苑丹丹  张永江  李锋  宋华 《化工进展》2015,34(7):1882-1886
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸为络合剂, 浸渍法制备了负载型Ni2P/TiO2-Al2O3催化剂前体, 程序升温H2还原法制备了Ni2P/TiO2-Al2O3催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了浸渍方法、Ni/P摩尔比、Ni2P负载量对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 当Ni/P比低于1:1时, 能得到单一的Ni2P物相;当Ni/P比为2:1时, 开始出现Ni3P物相。采用Ni/P比为1:1、Ni2P负载量为30%、采用共浸渍方法制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性, 在360℃、3.0MPa、氢油比500 (体积比)、液时体积空速2.0h-1的条件下反应4h时, 二苯并噻吩转化率为99.5%。  相似文献   

20.
吴文滨  丁同梅  田恒水 《化工进展》2016,35(11):3524-3528
目前工业上生产1,3-丙二醇的方法存在一定局限性,为了开发出避免醛类副产物生成的1,3-丙二醇合成工艺,在高压连续固定床反应器上,以丙二酸二乙酯为原料,使用Cu/HMS催化剂催化加氢制备1,3-丙二醇。考察了原料液浓度、氢酯摩尔比、液时空速、反应温度、反应压力对反应的影响,之后进一步考察了催化剂的稳定性,并通过XRD及TEM表征分析了催化剂失活的主要原因。结果表明:在原料液质量分数7.5%、氢酯摩尔比400、液时空速1.8h-1、反应温度200℃、反应压力1.8MPa的工艺条件下,催化剂表现出了较佳的催化加氢性能,丙二酸二乙酯转化率为93.4%,1,3-丙二醇收率可达到52.8%。反应120h后催化剂完全失活,结合XRD及TEM表征,认为粒径增大、活性组分流失或被部分氧化为Cu+是催化剂失活的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号