共查询到20条相似文献,搜索用时 46 毫秒
1.
受相机景深的限制,单次成像无法对不同景深的内容全部清晰成像.多聚焦图像融合技术可以将不同聚焦层次的图像融合为一幅全聚焦的图像,其中如何得到准确的聚焦映射是多聚焦图像融合中的关键问题.对此,利用卷积神经网络强大的特征提取能力,设计具有公共分支和私有分支的联合卷积自编码网络以学习多源图像的特征,公共分支学习多幅图像之间的公共特征,每幅图像的私有分支学习该图像区别于其他图像的私有特征.基于私有特征计算图像的活动测度,得到图像聚焦区域映射,据此设计融合规则以融合两幅多聚焦图像,最终得到全聚焦的融合图像.在公开数据集上的对比实验结果显示:主观评测上,所提出的方法能够较好地融合聚焦区域,视觉效果自然清晰;客观指标上,该方法在多个评价指标上优于对比方法. 相似文献
2.
朱亚辉 《计算技术与自动化》2022,(2):113-117
动静态联合滤波器具有良好的边缘平滑特性,对梯度反转和全局强度迁移等伪影具有很强的鲁棒性。为了保留源图像的结构信息,提出了基于动静态联合滤波器的多聚焦图像融合方法。首先采用动静态联合滤波器将源图像分解为结构分量和纹理分量,以视觉显著度加权法对结构分量进行融合,综合相位一致性和清晰度信息对纹理分量进行融合;将两分量叠加获得初始融合图像,并通过计算源图像与初始融合图像间的结构相似度作为决策矩阵,获得最终的融合图像。通过对比多组融合图像主、客观评价结果发现,该方法能有效保留边缘信息。 相似文献
3.
4.
基于人类视觉系统及信号的过完备稀疏表示理论,提出一种新的多聚焦图像融合算法。首先从待融合图像中随机取块构成训练样本集,经迭代运算获取过完备字典;然后由正交匹配追踪算法完成图像块的稀疏分解;再按分解系数的显著性选择融合系数并完成图像块的重构;重构块经重新排列并取平均后获得最后的融合图像。实验结果表明:该算法继承了目前较为优秀的多尺度几何分析方法的融合效果;在噪声存在的情况下,该算法表现出较好的噪声抑制能力,随噪声方差的升高,融合图像的主观质量及客观评价指标均要好于传统方法。 相似文献
5.
深度学习技术应用到多聚焦图像融合领域时,其大多通过监督学习的方式来训练网络,但由于缺乏专用于多聚焦图像融合的监督训练的标记数据集,且制作专用的大规模标记训练集代价过高,所以现有方法多通过在聚焦图像中随机添加高斯模糊进行监督学习,这导致网络训练难度大,很难实现理想的融合效果。为解决以上问题,提出了一种易实现且融合效果好的多聚焦图像融合方法。通过在易获取的无标记数据集上以无监督学习方式训练引入了注意力机制的encoder-decoder网络模型,获得输入源图像的深层特征。再通过形态聚焦检测对获取的特征进行活动水平测量生成初始决策图。运用一致性验证方法对初始决策图优化,得到最终的决策图。融合图像质量在主观视觉和客观指标两方面上进行评定,经实验结果表明,融合图像清晰度高,保有细节丰富且失真度小。 相似文献
6.
7.
多聚焦图像融合是一种以软件方式有效扩展光学镜头景深的技术,该技术通过综合同一场景下多幅部分聚焦图像包含的互补信息,生成一幅更加适合人类观察或计算机处理的全聚焦融合图像,在数码摄影、显微成像等领域具有广泛的应用价值。传统的多聚焦图像融合方法往往需要人工设计图像的变换模型、活跃程度度量及融合规则,无法全面充分地提取和融合图像特征。深度学习由于强大的特征学习能力被引入多聚焦图像融合问题研究,并迅速发展为该问题的主流研究方向,多种多样的方法不断提出。鉴于国内鲜有多聚焦图像融合方面的研究综述,本文对基于深度学习的多聚焦图像融合方法进行系统综述,将现有方法分为基于深度分类模型和基于深度回归模型两大类,对每一类中的代表性方法进行介绍;然后基于3个多聚焦图像融合数据集和8个常用的客观质量评价指标,对25种代表性融合方法进行了性能评估和对比分析;最后总结了该研究方向存在的一些挑战性问题,并对后续研究进行展望。本文旨在帮助相关研究人员了解多聚焦图像融合领域的研究现状,促进该领域的进一步发展。 相似文献
8.
9.
10.
针对多聚焦图像,提出一种基于图像分块的融合方法。将源图像分为大小相同数量相等的子块,采用能量梯度算子作为对焦评价函数,计算各个图像子块能量梯度匹配度,设置匹配度阈值分离出源图像中的清晰区域。源图像中的清晰区域直接作为融合图像相应的区域,其它区域的处理中,构造与相应子块能量梯度大小相关的图像序列,以及像素点到各个子块中心距离相关的融合函数,然后用融合函数对图像序列融合。实验结果表明该方法有效性和合理性。 相似文献
11.
12.
针对多聚焦图像融合容易出现信息丢失、块效应明显等问题,提出了一种新的基于图像抠图技术的多聚焦图像融合算法。首先,通过聚焦检测获得源图像的聚焦信息,并根据所有源图像的聚焦信息生成融合图像的三分图,即前景、背景和未知区域;然后,利用图像抠图技术,根据三分图获得每一幅源图像的精确聚焦区域;最后,将这些聚焦区域结合起来构成融合图像的前景和背景,并根据抠图算法得到的确定前景、背景对未知区域进行最优融合,增强融合图像前景、背景与未知区域相邻像素之间的联系,实现图像融合。实验结果表明,与传统算法相比,所提算法在客观评价方面能获得更高的互信息量(MI)和边缘保持度,在主观评价方面能有效抑制块明显效应,得到更优的视觉效果。该算法可以应用到目标识别、计算机视觉等领域,以期得到更优的融合效果。 相似文献
13.
目的 对于微距摄影来说,由于微距镜头的景深有限,往往很难通过单幅照片获得拍摄对象全幅清晰的图像.因此要想获取全幅清晰的照片,就需要拍摄多幅具有不同焦点的微距照片,并对其进行融合.方法 传统的微距照片融合方法一般都假定需要融合的图像是已经配准好的,也并没有考虑微距图像的自动采集.因此提出了一种用于微距摄影的多聚焦图像采集和融合系统,该系统由3个部分组成.第1部分是一种微距图像拍摄装置,该硬件能够以高精度的方式拍摄物体在不同焦距下的微距照片.第2部分是一个基于不变特征的图像配准组件,它可以对在多个焦点下拍摄的微距图像进行自动配准和对齐.第3部分是一个基于图像金字塔的多聚焦图像融合组件,这个组件能够对已经对齐的微距照片进行融合,使得合成的图像具有更大的景深.该组件对基于图像金字塔的融合方法进行了扩展,提出了一种基于滤波的权重计算策略.通过将该权重计算与图像金字塔相结合,得到了一种基于多分辨率的多聚焦图像融合方法.结果 论文使用设计的拍摄装置采集了多组实验数据,用以验证系统硬件设计和软件设计的正确性,并使用主观和客观的方法对提出的系统进行评价.从主观评价来看,系统合成的微距图像不仅具有足够的景深,而且在高分辨率下也能够清晰地呈现物体微小的细节.从客观评价来看,通过将系统合成的微距图像与其他方法合成的微距图像进行量化比较,在标准差、信息熵和平均梯度3种评价标准中都是最优的.结论 实验结果表明,该系统是灵活和高效的,不仅能够对多幅具有不同焦点的微距图像进行自动采集、配准和融合,并且在图像融合的质量方面也能和其他方法相媲美. 相似文献
14.
针对基于小波变换的多聚焦图像融合算法,改进融合规则和融合算子,低频分量采用以相关系数作为阈值的加权平均算法,高频分量采用基于区域特征的融合算法,并对最佳分解层数与最佳小波基的选取进行优化验证。通过对实验结果的分析,选用bior4.4小波,进行最佳分解层数小波分解,并应用改进的融合规则,在融合多聚焦图像的效果上,与其他多种融合算法相比,各项评价指标都比较理想。 相似文献
15.
为提高多聚焦图像的融合效果,提出一种基于相干性的融合算法。该算法对源图像进行离散小波变换,利用高频小波系数构造结构张量矩阵,通过矩阵特征值定义反映局部几何信息的相干性并建立融合策略。实验结果表明,该算法得到的融合图像在主观视觉效果和客观量化指标方面均有良好的表现,提高了融合的视觉效果。 相似文献
16.
针对现有的多聚焦图像融合方法对聚焦/散焦边界(FDB)信息捕捉不准确的问题,提出了一种新的基于线性稀疏表示和图像抠图的多聚焦图像融合方法。首先,引入一种基于线性稀疏表示的焦点测度,它利用自然图像形成的字典与输入图像在局部窗口上的线性关系,通过求解线性系数来表示图像的焦点信息。然后,利用焦点测度获取源图像的焦点图和一个由聚焦区域、散焦区域以及包含FDB的未知区域组成的三元图,并将三元图作为一个输入,采用图像抠图技术处理源图像的FDB区域,从而得到较精确的全聚焦图像。最后,为了进一步提高融合图像的质量,将得到的全聚焦图像作为新字典实现融合过程的迭代进行,在经过设定的更新次数后得到最终的全聚焦融合图像。实验结果表明,相比于11种最先进的多聚焦图像融合方法,该方法具有较好的融合性能和视觉效果,且有较高的计算效率。 相似文献
17.
一种基于小波变换的多聚焦图像融合方法 总被引:1,自引:0,他引:1
提出了一种改进的基于小波变换的多聚焦图像融合方法。该方法采用小波变换对源图像进行多尺度分解,得到高频和低频图像;对高频分量采用基于邻域方差加权平均的方法得到高频融合系数,对低频分量采用基于局部区域梯度信息的方法得到低频融合系数;进行小波反变换得到融合图像。采用均方根误差、信息熵以及峰值信噪比等评价标准,将该方法与传统融合方法的融合效果进行了比较。实验结果表明,该方法所得融合图像的效果和质量均有明显提高。 相似文献
18.
针对近年在对多聚焦图像融合领域中存在图像融合效果好的方法运算量大、实现起来复杂的问题,在传统的像素级分块融合方法和数学微分中逼近原理的启发下,提出了多聚焦图像在像素级分块逼近的图像融合方法。实验结果表明:该方法在融合效果上已经到达甚至略优于一些文献中提出的方法,而在运算量和运算时间方面要明显优于这些方法,更有利于实际应用中多聚焦图像融合的快速实现。 相似文献
19.
针对多聚焦图像融合中缺乏细节保护和结构不连续的不足,提出了一种基于图像分解的多聚焦图像融合算法.首先,源图像采用卡通纹理图像分解得到卡通部分和纹理部分;其次,卡通部分采用卷积稀疏表示的方法进行融合,纹理部分采用字典学习进行融合;最后,将卡通和纹理部分融合得到融合图像.实验建立在标准的融合数据集中,并与传统和最近的融合方法进行比较.实验结果证明,该算法所获得的融合结果在方差和信息熵上具有更好的表现,该算法能够有效克服多聚焦图像融合中缺乏细节保护和结构不连续的缺点,同时有更好的视觉效果. 相似文献