首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
目的 卷积神经网络方法可以提取到图像的深层次信息特征,在脑部磁共振图像(MRI)分割领域展现出优秀的性能。但大部分深度学习方法都存在参数量大,边缘分割不准确的问题。为克服上述问题,本文提出一种多通道融合可分离卷积神经网络(MFSCNN)模型分割脑图像。方法 首先,在训练集中增加待分割脑结构及其边缘像素点的权重,强制使网络学习如何分割脑结构边缘部分,从而提升整体脑结构分割的准确率。其次,引入残差单元,以避免梯度弥散,同时使用深度可分离卷积代替原始的卷积层,在不改变网络每个阶段特征通道数的情况下,减少了网络训练的参数数量和训练时间,降低了训练成本。最后,将不同阶段的特征信息合并在一起,进行通道混洗,得到同时包含深浅层次信息的增强信息特征,加入到网络中进行训练,每个阶段的输入特征信息更丰富,学习特征的速度和收敛速度更快,显著地提升了网络的分割性能。结果 在IBSR(internet brain segmentation repositor)数据集上的分割结果表明,MFSCNN的分割性能相对于普通卷积神经网络(CNN)方法要明显提高,且在边缘复杂的部分,分割效果更理想,Dice和IOU(intersection over union)值分别提升了0.9% 6.6%,1.3% 9.7%。在边缘平滑的部分,MFSCNN方法比引入残差块的神经网络模型(ResCNN)和引入局部全连接模块的神经网络模型(DenseCNN)分割效果要好,而且MFSCNN的参数量仅为ResCNN的50%,DenseCNN的28%,在提升分割性能的同时,也降低了运算复杂度,缩短了训练时间。同时,在IBSR、Hammer67n20、LPBA40这3个数据集上,MFSCNN的分割性能比现有的其他主流方法更出色。结论 本文提出的MFSCNN方法,加强了网络特征的信息量,提升了网络模型的训练速度,在不同数据集上均获得更精确的MR脑部图像分割结果。  相似文献   

3.
多聚焦图像融合是一种以软件方式有效扩展光学镜头景深的技术,该技术通过综合同一场景下多幅部分聚焦图像包含的互补信息,生成一幅更加适合人类观察或计算机处理的全聚焦融合图像,在数码摄影、显微成像等领域具有广泛的应用价值。传统的多聚焦图像融合方法往往需要人工设计图像的变换模型、活跃程度度量及融合规则,无法全面充分地提取和融合图像特征。深度学习由于强大的特征学习能力被引入多聚焦图像融合问题研究,并迅速发展为该问题的主流研究方向,多种多样的方法不断提出。鉴于国内鲜有多聚焦图像融合方面的研究综述,本文对基于深度学习的多聚焦图像融合方法进行系统综述,将现有方法分为基于深度分类模型和基于深度回归模型两大类,对每一类中的代表性方法进行介绍;然后基于3个多聚焦图像融合数据集和8个常用的客观质量评价指标,对25种代表性融合方法进行了性能评估和对比分析;最后总结了该研究方向存在的一些挑战性问题,并对后续研究进行展望。本文旨在帮助相关研究人员了解多聚焦图像融合领域的研究现状,促进该领域的进一步发展。  相似文献   

4.
在图像语义分割中,利用卷积神经网络对图像信息进行特征提取时,针对卷积神经网络没有有效利用各层级间的特征信息而导致图像语义分割精度受损的问题,提出分级特征融合的图像语义分割方法.该方法利用卷积结构分级提取含有像素级的浅层低级特征和含有图像级的深层语义特征,进一步挖掘不同层级间的特征信息,充分获取浅层低级特征和深层语义特征...  相似文献   

5.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度...  相似文献   

6.
深度学习作为一个新的机器学习方向,被应用到计算机视觉领域上成效显著.为了解决分布式的尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)算法效率低和图像特征提取粗糙问题,提出一种基于深度学习的SIFT图像检索算法.算法思想:在Spark平台上,利用深度卷积神经网络(Convolutional Neural Network,CNN)模型进行SIFT特征抽取,再利用支持向量机(Support Vector Machine,SVM)对图像库进行无监督聚类,然后再利用自适应的图像特征度量来对检索结果进行重排序,以改善用户体验.在Corel图像集上的实验结果显示,与传统SIFT算法相比,基于深度学习的SIFT图像检索算法的查准率和查全率大约提升了30个百分点,检索效率得到了提高,检索结果图像排序也得到了优化.  相似文献   

7.
传统图像标注方法中人工选取特征费时费力,传统标签传播算法忽视语义近邻,导致视觉相似而语义不相似,影响标注效果.针对上述问题,文中提出融合深度特征和语义邻域的自动图像标注方法.首先构建基于深度卷积神经网络的统一、自适应深度特征提取框架,然后对训练集划分语义组并建立待标注图像的邻域图像集,最后根据视觉距离计算邻域图像各标签的贡献值并排序得到标注关键词.在基准数据集上实验表明,相比传统人工综合特征,文中提出的深度特征维数更低,效果更好.文中方法改善传统视觉近邻标注方法中的视觉相似而语义不相似的问题,有效提升准确率和准确预测的标签总数.  相似文献   

8.
针对图像识别算法中图像集上几何曲面的特定分类会导致判别信息丢失的问题,提出一种融合卷积神经网络的改进型迭代深度学习算法(IIDLA)。该算法采用混合卷积网(PCL)进行底层的平移不变特征学习,以层次化的方式迭代应用卷积神经网络(CNN)对输入图像集的不同非线性特征进行学习。算法的图库和查询实例中包括了不同视角、背景、面部表情、解析度和照明度的人脸或物体图像集。采用数据集将提出的算法与其他算法进行评估对比,实验结果表明,提出的算法在被测数据集上的性能最优。  相似文献   

9.
在临床医学影像诊断中,仅靠医生个人经验和传统技术手段难以精准识别医学图像结果,而依托计算机技术对医学图像处理,不仅能提高医生对医学图像的诊断效率,而且能减少医生的主观性判断,有利于提升医学诊断质量。在计算机领域卷积神经网络(Convolutional Neural Network,CNN)对图像分析具有显著优势。基于此,文章分析深度卷积神经网络在医学图像分割中的应用。  相似文献   

10.
为进一步提高人脸表情识别的准确率,提出一种融合全局与局部特征的深度卷积神经网络算法(GL-DCNN).该算法由两个改进的卷积神经网络分支组成,全局分支和局部分支,分别用于提取全局特征和局部特征,对两个分支的特征进行加权融合,使用融合后的特征进行分类.首先,提取全局特征,全局分支基于迁移学习,使用改进的VGG19网络模型...  相似文献   

11.
医学影像是产前筛查、诊断、治疗引导和评估的重要工具,能有效避免胎儿脑的发育异常。近年来,磁共振成像在产前诊断中愈加重要,而实现自动、定量、精确地分析胎儿脑磁共振图像依赖于可靠的图像分割。因此,胎儿脑磁共振图像分割具有十分重要的临床意义与研究价值。由于胎儿图像中存在组织器官多、图像质量差及结构变化快等问题,胎儿脑磁共振图像的分割面临着巨大的困难与挑战。目前,尚未有文献对该领域的方法进行系统性的总结和分析,尤其是基于深度学习的方法。本文针对胎儿脑磁共振图像分割方法进行综述,首先,对胎儿脑磁共振图像的主要公开图谱/数据集进行详细说明;接着,对脑实质提取、组织分割和病灶分割方法进行全面的分类与分析;最后,对胎儿脑磁共振图像分割面临的挑战及未来的研究方向进行总结与展望。  相似文献   

12.
针对体域网的多传感器数据采集过程中存在的数据冗余大、特征信息模糊问题,提出了一种基于深度神经决策森林(DNDF)的数据融合方法。首先根据目标任务的实际需求,使用卷积神经网络进行相关特征提取,再将决策树放置到全连接层之后进行精细化数据分类。通过使用DNDF方法,不仅能够有效提取多维数据的关键特征,而且能够较好地兼顾数据间的关联性。实验以AReM数据集作为实验样本,结果表明,DNDF方法相对其他传统算法具有更好的分类准确率,分类准确率达到了96.5%。  相似文献   

13.
杜年茂  徐佳陈  肖志勇 《计算机应用》2020,40(10):3060-3065
针对目前基于深度学习的欠采样磁共振(MR)图像重建方法都是基于单个切片的重建而忽略相邻切片间的数据冗余的问题,提出一种用于欠采样的多切片脑部MR图像重建的混合级联卷积神经网络(HC-CNN)。首先,将传统的重建方法拓展为基于深度学习的重建模型,并使用级联卷积神经网络来代替传统的迭代重建框架。然后,在每次迭代重建中,分别使用3D卷积模块和2D卷积模块来学习脑部MR图像序列中存在的相邻切片间与单幅切片内部的数据冗余。最后,在每次迭代中使用数据一致性(DC)模块来保持重建图像在k-空间的数据保真度。在单线圈脑部MR图像数据集上的仿真实验结果显示,相较于基于单幅MR图像的重建方法,所提方法在4倍加速因子下的峰值信噪比(PSNR)值平均提升了1.75 dB,在6倍降采样因子下的PSNR值平均提升了2.57 dB,而且该方法的单张图像重建平均用时为15.4 ms。实验结果表明:所提方法不仅能够有效利用切片间的数据冗余并重建出更高质量的图像,而且具有较高的实时性。  相似文献   

14.
目的 现有的去雨方法存在去雨不彻底和去雨后图像结构信息丢失等问题。针对这些问题,提出多尺度渐进式残差网络(multi scale progressive residual network, MSPRNet)的单幅图像去雨方法。方法 提出的多尺度渐进式残差网络通过3个不同感受野的子网络进行逐步去雨。将有雨图像通过具有较大感受野的初步去雨子网络去除图像中的大尺度雨痕。通过残留雨痕去除子网络进一步去除残留的雨痕。将中间去雨结果输入图像恢复子网络,通过这种渐进式网络逐步恢复去雨过程中损失的图像结构信息。为了充分利用残差网络的残差分支上包含的重要信息,提出了一种改进残差网络模块,并在每个子网络中引入注意力机制来指导改进残差网络模块去雨。结果 在5个数据集上与最新的8种方法进行对比实验,相较于其他方法中性能第1的模型,本文算法在5个数据集上分别获得了0.018、0.028、0.012、0.007和0.07的结构相似度(structural similarity, SSIM)增益。同时在Rain100L数据集上进行了消融实验,实验结果表明,每个子网络的缺失都会造成去雨性能的下降,提出的多尺度渐进式网...  相似文献   

15.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

16.
针对脑肿瘤磁共振成像(MRI)模态多、训练数据少、类别不平衡以及各个私有数据库差异大等导致分割困难的问题,引入小样本分割方法,并提出基于U-net的原型网络(PU-net)模型用以对脑肿瘤磁共振(MR)图像进行分割.首先对U-net的结构进行调整来提取各类瘤体的特征用以计算原型;然后在原型网络的基础上,逐像素利用原型对...  相似文献   

17.
目前,在基于文档信息的推荐任务中,传统基于文档的混合推荐算法仍依赖于浅层的线性模型,当评分数据变得庞大且复杂时,其推荐性能往往不太理想。针对此问题,提出一种深度融合模型(DeepFM),该模型能够在完全捕获文本信息的同时也能很好地处理复杂且稀疏的评分数据。DeepFM由两个并行的神经网络组成,其中一路神经网络使用多层感知器提取评分矩阵的行向量信息从而获得用户的潜在特征向量,另一路则使用MLP和卷积神经网络(CNN)共同建模从而提取额外有关项目的文本信息得到项目潜在特征向量。最后,通过构建融合层将用户特征向量和项目特征向量进行融合得出预测评分。实验结果表明,DeepFM在MovieLens数据集和亚马逊数据集上的性能优于主流的推荐模型。  相似文献   

18.
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union)。最后,指出了图像语义分割领域未来可能的热点方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号