共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
为了显著增大煤层透气性系数,达到高效抽采瓦斯的目的,提出了煤矿井下钻孔吞吐压裂增透抽采瓦斯技术,分析发现吞吐压裂实施过程中,在最大和最小水平主应力方向能够产生径向引张裂隙、周缘引张裂隙、剪切裂隙、转向裂隙等;同时,裂隙壁面错位支撑增容,形成了瓦斯运移产出的高速通道。现场试验表明:实施吞吐压裂与未采取瓦斯抽采措施相比,单孔瓦斯抽采纯量提高了7~12倍,瓦斯抽采体积分数提高4~5倍,钻孔瓦斯流量衰减系数降低了1/4~1/3;实施吞吐压裂与采取常规水力压裂相比:单孔瓦斯抽采纯量提高了1.6~3.0倍,瓦斯抽采体积分数提高1.2~2.0倍,钻孔瓦斯流量衰减系数降低了1/5~1/3。 相似文献
5.
6.
为了提高瓦斯抽采率及增加煤层透气性,研究了水力压裂增透范围以及其在瓦斯抽采中的应用,分析了瓦斯渗透率与含水率关系、煤层应力—渗流规律,采用数值模拟软件,研究了孔隙水压力分布、孔隙最大主应力、不同测压系数下最大主应力变化、宏观裂隙长度变化规律以及渗流量、空隙水压、最大主应力的变化曲线。应用实践表明:当采用水力压裂技术时,抽采效果提高了3~5倍。研究可为类似工程条件的瓦斯抽采提供了借鉴。 相似文献
7.
8.
针对低透气性高瓦斯煤层预抽瓦斯困难问题,提出导向槽定向水力压裂煤层增透技术,通过理论推导计算煤层段扩孔后塑性区分布,分析穿层钻孔煤层段水压裂缝的起裂与扩展,揭示导向槽定向水力压裂煤层增透的力学机制,研发导向槽定向水力压裂煤层增透装备。在山西中兴煤矿进行现场应用,结果表明:利用水射流方法对穿层钻孔煤层段进行扩孔,使得煤中产生形似圆柱孔洞,穿层钻孔围岩塑性区半径与钻孔半径成正比,钻孔扩孔是增大塑性区范围的一种有效方法,裂隙扩展明显,瓦斯采出率提高。同时研发了一种导向槽定向水力压裂防突成套装备,主要部件有移动高压水力泵站、喷头、喷嘴、螺旋辅助排渣水射流高压钻杆、孔口防喷装置以及高压旋转接头,结合井下水力化作业远程监测和控制,现场监测结果表明,通过增透作业钻孔的方法,平均瓦斯浓度和瓦斯抽采混合量提高到常规孔的2.75倍和1.81倍,说明采取导向槽定向水力压裂措施的增透效果显著。 相似文献
9.
针对单一低渗煤层瓦斯抽采困难的问题,提出采用水力压裂技术压裂煤层增大其透气性,提高瓦斯抽采效果。以鹤壁中泰矿业33071抽放巷为试验点,考察了压裂前后百米钻孔瓦斯流量、瓦斯抽采浓度、抽采流量等参数变化情况。试验结果表明:百米钻孔瓦斯流量提高了1.80~2.68倍,单孔抽采浓度和流量比压裂前分别增大了7.5倍和95倍,煤层透气性系数增加了9~18倍,衰减系数减小了210%~280%。 相似文献
10.
煤矿井下水力压裂增透抽采机理及应用研究 总被引:3,自引:0,他引:3
通过借鉴地面水力压裂技术的成功模式,研究了煤矿井下水力压裂增透抽采机理,针对单一、低渗高突煤层的特点,研发了一套井下压裂增透抽采技术及装备,并进行了工业性试验。应用效果表明:通过井下对煤体进行水力压裂,中平能化十矿24110工作面煤层渗透率提高了800倍,单孔瓦斯抽放量提高了120倍;鹤壁六矿2115运输巷掘进期间水力压裂后突出危险性效检指标超标率显著下降,瓦斯体积分数普遍降到临界值0.8%以下,大幅降低了煤与瓦斯突出危险性。 相似文献
11.
12.
为了解决某煤矿低透气性煤层难抽采的问题,分析了水力压裂增透裂缝扩展规律以及煤层水力压裂卸压增透机理,采用PFPA-2D数值模拟软件,研究了单注水孔以及双注水孔的水力压裂过程中的裂缝扩展规律及煤体位移和应力变化规律,实现大范围裂隙网的形成、贯通和发育,提高了煤体的透气性。通过现场试验,实现了低透气性煤层卸压增透的目的,验证了低透气性煤层水力压裂增透技术的安全性、有效性和适用性。 相似文献
13.
针对煤层水力压裂过程中存在的压裂水压小、设备能力低、封孔质量差等问题,结合煤层具体条件,从压裂钻孔高压封孔工艺、水力压裂系统设备、现场压裂工艺等方面对鹤壁十矿水力压裂卸压增透技术进行了优化研究。现场压裂试验结果显示:压裂导致煤体卸压增透的区域达到30 m左右,煤层渗透率显著增大;压裂试验后,现场实测煤层残存瓦斯含量以及通过含量反算的残存瓦斯压力均明显要低于防突规定中的突出临界指标值;且压裂试验后,最大抽采浓度较压裂试验前增加了6.30倍,日均单钻孔抽放量增加了17.5倍,抽采效果显著改善,改进后的水力压裂工艺达到了减少施工量、提高抽采率、降低煤层突出危险性的目的。 相似文献
14.
为解决松软低透气性煤层瓦斯抽采难度大、效率低的难题,以新景煤矿3#煤层为研究对象,采用PFC2D颗粒流数值模拟软件和控制变量法,研究不同注水流量和压裂时间对煤层水力压裂半径、裂缝最大开度和裂缝数目的影响。研究结果表明:松软低透气性煤层水力压裂半径、裂缝最大开度和裂缝数目与注水流量和压裂时间均呈幂函数形式增长。基于松软低透气性煤层的特点,引入压裂液效率,得到了压裂半径、裂缝最大开度和裂缝数目的修正计算公式。基于新景煤矿3#煤层实际工程地质条件,在南五底抽巷进行了现场水力压裂试验。试验结果表明:当泵注压力为20~25 MPa、注水量为90~100 m3时,水力压裂半径约为50 m;水力压裂区域煤层透气性系数、平均抽采瓦斯浓度、百米巷道瓦斯抽采量和单孔平均抽采瓦斯纯流量分别为未压裂区域煤层的22.0、2.2、2.4、2.7倍,为新景煤矿3#煤层水力压裂参数选取和瓦斯抽采设计提供了技术指导。 相似文献
15.
为提高低透气性突出煤层瓦斯治理效果,基于水力压裂的低温、高压、瓦斯解吸快等特性,对低透气性煤层进行水力压裂消突增透试验。试验表明:压裂周围形成裂隙发育区,压裂区域抽采效果提升显著,煤层平均含水率增大1.8倍,单孔抽采浓度提高3.12倍,抽采率提高40%~50%。由于增加裂隙发育以及水驱气的双重作用下,抽采半径由原来的的3 m增加到20 m。水力压裂增透消突技术更加安全、高效。 相似文献
16.
为了研究水力压裂技术在矿井瓦斯抽采中的应用,以41011工作面为例,根据矿井实际地应力参数信息,设计了压裂孔和导向孔钻孔布置,介绍了组合式封孔工艺,分析了水力压裂的主要设备为管路系统、辅助系统、控制装置和动力装置。研究得出,当采取水力压裂技术后,钻屑瓦斯解吸指标K1明显下降,降低了工作面的危险性,压裂孔的平均瓦斯抽采纯量和平均抽采浓度分别提高了2.2倍和2.6倍。研究为后期瓦斯治理提供了技术支持。 相似文献
17.
针对煤与瓦斯突出矿井煤层透气性差、瓦斯较难抽采的现状,为提高突出矿井的抽采效果,改善矿井抽掘采衔接紧张的局面,提出采用水力压裂增透技术,结合保安矿现场实际考察应用情况,详细介绍了适用于矿井的水力压裂工艺流程及参数。现场实践表明,水力压裂后,掘进条带区域的煤层瓦斯抽采纯量相比原始未压裂煤体的瓦斯抽采纯量提高1倍以上,煤层透气性系数相比原始煤层透气性系数提高8倍以上。水力压裂技术可精准提高矿井煤层的透气性,增大瓦斯抽采浓度和抽采量,大大缩短了瓦斯预抽时间,可进一步提升瓦斯抽采钻孔的抽采能力,有效缩短抽采达标时间,为采煤工作面本煤层预抽提供了瓦斯抽采空间,解决了矿井抽掘采衔接紧张问题,可为相似地质条件矿井提供参考。 相似文献
18.
随着井下煤矿开采深度的不断加大,煤层透气性进一步降低,煤层瓦斯抽采难度亦同时增加,对于单一无保护层煤层来说,大多数需要人为地增加渗透率,水力压裂因其增透范围广,性价比相对较高而取得广泛的应用。对于深井低透气性煤层来说,为了进一步提高瓦斯抽采效率,单次的水力压裂增透技术已然不能满足需要,因此提出了井下重复水力压裂技术,并且论述了重复压裂原理及工艺流程。根据十二矿己_(15)-31040工作面地质情况,设计了相关水力压裂参数,并进行了重复水力压裂和压裂之后瓦斯抽采的效果检验。结果表明:煤层经过重复水力压裂后,煤层残余瓦斯含量较单次压裂降低明显,而且瓦斯抽采浓度和纯量亦增加显著。试验结果表明重复水力压裂可以明显提高深井低透气性煤层瓦斯抽采效率,具有一定瓦斯防治的应用价值。 相似文献
19.