首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
常程  姬忠礼  刘佳霖 《化工学报》2020,71(12):5610-5619
纤维聚结滤芯广泛用于压缩空气净化、发动机曲轴箱通风、加工和切割等一系列工艺过程中,用于除去气流中的液体气溶胶颗粒。由于聚结滤芯饱和度对于过滤效率及阻力具有重要影响,因此建立饱和度与滤材参数及操作条件之间的关系将有助于优化滤芯结构并提高过滤性能。目前实际工业用聚结滤芯通常由多层微米级玻璃纤维材料组成,然而现有计算模型无法用于此类滤芯的饱和度预测。因此,本文基于多种常用亲油型聚结滤芯压降及饱和度实验测试结果,根据"跳跃-通道"模型及毛细管理论建立了新的饱和度预测模型。通过与大量已发表文献数据对比发现,当饱和值大于0.2时,预测值与实验结果吻合度较好,相对偏差≤20%。随着饱和度的降低,滤芯润湿区域和非润湿区域之间界限逐渐明显,此时无需对毛细管半径进行修正。然而,新模型仍然要依靠压降测量值进行计算,这一问题需在后续工作中加以解决。  相似文献   

2.
《分离科学与技术》2012,47(8):1955-1973
Abstract

Coalescing filters are widely used throughout industry for removal of liquid aerosols from gases or the separation of liquid droplets from emulsions. Typical filters are constructed of non-woven fibers. Fibrous filters are capable of efficient removal of micron and submicron sized droplets and particles. The filtration process is highly complex due to variability in fiber sizes, particle sizes, mixtures of particles and droplets, mixture of types of droplets (oil, water, etc.), and effects of viscosity, surface tension, and chemical reactions between components or with the filter fibers. Prediction of filter performance under such complex conditions is difficult.

Performance of a filter depends on many factors like particle and fiber sizes, flow rate, surface properties of the fibers etc. One of those parameters is the saturation of the filter medium. Saturation is a measure of the amount of liquid present in the void space. Prior models assume that the saturation is uniform along the depth of the medium. In real media, the liquid holdup at steady state need not be uniform with position. Local velocity increases when the saturation is high.

In this paper, a steady state model for a coalescing filter is used to evaluate the effects of saturation on void fraction and its subsequent effect on filter performance. Single fiber mechanisms of direct interception and diffusion deposition are used to model droplet capture efficiencies and drag forces. These mechanisms are applied to volume averaged continuum equations in which the saturation is varied linearly with position in the filter. The results show the minimum pressure drop and largest quality factor occurs with a uniform saturation profile and that variation in average saturation has a greater effect on filter performance than does the slope of the linear saturation profile. The model predicts that uniform saturation profile performs better than the other profiles.  相似文献   

3.
An interacting triangular tube bundle model is developed using capillaries of equilateral triangle cross sections. In addition to pressure equilibration among the capillaries, the non-circular tubes allow the wetting phase to reside in the corners and flow continuously in the entire model. An interacting-serial type model is constructed with step changes of tube size along the model, while the total cross-section of the model is kept constant. This model includes trapping of oil which is absent in traditional tube bundle models. Trapping of non-wetting phase in the model in imbibition processes is simulated. The relationship between the residual oil saturation and the complete capillary number CA is investigated. The simulation results obtained by this model are consistent with the results reported in literature of both experimental studies, using actual porous media, and simulations in pore-scale network models. The effects of the tube size, tube size distribution and viscosity ratio on the magnitude of entrapment are also studied using this tube bundle model.  相似文献   

4.
5.
Experimental results on pressure drop and flow patterns for gas–liquid flow through packed beds obtained in the International Space Station with two types of packing are presented and analyzed. It is found that the pressure drop depends on the packing wettability in the viscous–capillary (V–C) regime and this dependence is compared with previously published results developed using short duration low-gravity aircraft tests. Within the V–C regime, the capillary contribution is the dominant force contributing to the pressure drop for the wetting case (glass) versus the viscous contribution dominating for the non-wetting case (Teflon). Outside of the V–C regime, it is also found that hysteresis effects that are often strong in normal gravity gas–liquid flows are greatly diminished in microgravity and pressure drop is nearly independent of packing wettability. A flow pattern transition map from bubble to pulse flow is also compared with the earlier aircraft data.  相似文献   

6.
Two-phase flow in porous media depends on many factors, such as displacement vs steady two-phase flow, saturation, wettability conditions, wetting fluid vs non-wetting fluid is displacing, the capillary number, interfacial tension, viscosity ratio, pressure gradient, uniformly wetted vs mixed-wet pore surface, uniform vs distributed pore throats, small vs large pores, well-connected pores vs pores connected by small throats, etc. These parameters determine how the two fluids are distributed in the pores, e.g. whether they flow in seperate channels or side-by-side in the same channels, either with both fluids being continous or only one fluid being continous and the other discontinuous. In displacement, the capillary number and the viscosity ratio determine whether the displacement front is sharp, or if there is either capillary or viscous fingering.  相似文献   

7.
The evolution of pressure drop, drainage rate, saturation, and efficiency of combined philic, and phobic oil mist filters in real‐time are examined. The experiments used four different filter configurations, with a combination of oleophobic and oleophilic fibrous filter media, and one oleophilic only reference. The effect of separating filter materials of differing wettability, with a mesh, was also explored. It was found that inclusion of a mesh between layers promoted increased drainage rates and resulted in a significantly lower pressure drop across the filter. The overall mass‐based filtration efficiency was also slightly higher for the configurations containing the mesh. Conversely, re‐entrainment of droplets from the rear face of the filter was only observed in filter configurations without the central mesh. Filters with oleophobic initial layers did not display a classical “depth filtration” pressure drop curve. The oleophobic media was found to possess lower steady‐state saturation than oleophilic media. Additionally, the steady‐state saturation of the oleophilic filter media, when placed at the rear of the filter, was lower when the central mesh was present. The saturation values were compared with recently published theory. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2976–2984, 2014  相似文献   

8.
A numerical model has been developed to optimize the design of pleated filter panels. In this model, the fluid flow is modeled by a steady laminar flow and the filter media resistance is governed by the Darcy-Lapwood-Brinkman equation. A finite element method with a nine-node Lagrangian element is used to solve the governing equations. For the rectangularly pleated filter panel, the numerical results agree well with the analytical model of Yu and Goulding (1992) and with his experimental data. The pressure drop increases at small pleat count due to increased media face velocity, and at large pleat count due to increased viscous drag in the pleat spacings. Therefore, an optimal pleat count for minimum pressure drop exists at a certain pleat height for each filter media type. The optimization of rectangular pleated filters, e.g., mini-pleated filter panels, has been performed for six commercial filter media. The optimal pleat count is shown to increase with decreasing media permeability of the filter media. A generalized correlation curve has been found for the six filter media by using a nondimensional parameter analysis. The results can be used to design pleated filter panels with minimum pressure drop.  相似文献   

9.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection–induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

10.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection-induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

11.
Three types of multilayer air filter media were developed and evaluated. Two other existing filters were also used for comparison of filter performance. The pressure drop, the collection efficiency, and the dust-holding capacity of the tested filters were measured, and the internal structure of the filter media was analyzed by using a scanning electron microscope. The multilayer filters tested in this study are composed of pre-surface layer, surface layer, and substrate layer. Among those layers, the surface layer is mainly responsible for particle collection. As a test result, it was found that the thickness of a surface layer has the greatest effect on filtration performance of a multilayer air filter. Additionally, filtration velocity and electrostatic forces should be considered together as important parameters for multilayer air filter design.  相似文献   

12.
根据ISO-12500标准建立了压缩空气滤芯性能检测系统,将操作压力由0.1 MPa升至0.7 MPa,分析了操作压力对亲油型和疏油型两种滤芯内的液体分布、滤材饱和度和过程压降的影响. 结果表明,操作压力对疏油型滤芯的过程压降、液体运移与饱和度有显著影响,操作压力每上升0.2 MPa,滤芯初始压降上升0.32 kPa,各操作压力下滤芯润湿压降(平衡压降与初始压降的差)为4.5~5.1 kPa,0.7 MPa时最后1层滤材饱和度比0.1 MPa时上升了71%,饱和度沿气体流动方向呈凹型分布,小面积润湿区域增多,稳态压降前出现短暂跃升阶段,可能加剧滤芯二次夹带,导致过滤器下游管道内液滴数增多,降低过滤器效率;操作压力对亲油型滤芯的初始压降影响显著,操作压力每上升0.2 MPa,初始压降上升0.39 kPa;操作压力对液体运移与饱和度影响较小,不同操作压力下各层滤材饱和度的分布规律相同,液体分布无明显差异.  相似文献   

13.
In air filtering applications, a filter's pressure drop at a defined collection efficiency constitutes an important parameter. This paper discusses the variables influencing the pressure drop in air filters featuring deep-pleated filter media. For cassette-type fine filters in accordance with EN 779 or for HEPA/ULPA filters in accordance with EN 1822, the most commonly used media are paper-like materials with a thickness of less than 1 mm, which offer a relatively high resistance to the air flowing through them. Manufacturers accordingly endeavour to accommodate a maximum of filter medium area in a small space. To enable the pressure drops customary in intake, exhaust and re-circulated air filtration to be assured, the filter medium is therefore arranged in narrow, deep pleats. Particularly when large quantities of air are being handled per filter element, it is advantageous to pleat the filter medium in depths of 150 mm to 280 mm. The conversion technique and the resultant pleat geometry exert a crucial influence on the pressure drop concerned.  相似文献   

14.
The present work describes the development of a two-parameter non-uniform capillary model to describe kinetics of flow in porous solids with complex tortuous varying paths. Experimentally, the rate of fluid flow in such a non-uniform capillary is found to be orders of magnitude slower compared with a corresponding average uniform capillary. This slow rate is explained in terms of an extremely small 'effective' hydrodynamic radius. The origin of such an 'unphysical' radius is rationalized based on geometrical considerations and effective driving forces for flow through a stepped capillary. Infiltration rate parameters are derived from the geometry of the porous medium for both wetting and non-wetting conditions.  相似文献   

15.
The invasion percolation algorithm is used to simulate two-fluid immiscible displacement of a wetting fluid by a non-wetting fluid in various porous media represented by two-dimensional and three-dimensional networks of interconnected capillaries. Trapping of the displaced fluid occurs, thereby creating isolated islands. The effects of the thickness of the porous medium on the island size distribution are studied for capillary displacements for the case in which buoyancy effects are negligible. It was found in a previous study that the number of islands of size s scales approximately as s~" in two-dimensional porous media, where a is a function of the fluid viscosity ratio. The present work reveals that there is a cross-over behavior between the two-dimensional and the three-dimensional problems.  相似文献   

16.
《Journal of aerosol science》2003,34(11):1493-1504
Electret filters are composed of permanently charged electret fibers and are widely used in applications requiring high collection efficiency and low-pressure drop. We tested electret filter media used in manufacturing cabin air filters by applying two different charging states to the test particles. These charging states were achieved by spray electrification through the atomization process and by bipolar ionization with an aerosol neutralizer, respectively. Polydisperse solid NaCl particles with 0.1%, and 1% solutions or liquid dicotyl sebacate (DOS) particles were generated from an atomizer, and they were loaded on the filter media. The amount of charge, the mean particle size, and the particle material significantly affected the collection performance of the electret filter media for submicron particles. The collection efficiency of the electret filter media degraded as more particles were loaded, and showed minimum efficiency at steady state. The electret filter media captured the highly charged particles more efficiently during the transient state. At steady state, the filter media loaded with smaller NaCl particles showed lower collection efficiency. The filter media loaded with liquid DOS particles showed collection efficiency much lower than those loaded with solid NaCl particles.  相似文献   

17.
A new cutting and joining model of the pore space is presented for calculating wetting and non-wetting phase relative permeability curves in two-phase flow in porous media. Experimental relative permeability curves have been measured in packings of glass beads, both monosized and with a range of sizes. The results are compared with the predictions of the model and with those of other models from the literature.  相似文献   

18.
Various features of wetting/dewetting of porous media are examined. The phenomenon of capillary hysteresis is illustrated by a vertical capillary tube which consists of an alternating sequence of convergent—divergent conical sections. A study of the kinetics of wetting of this tube by a liquid shows that when the velocity of the liquid/vapour meniscus is plotted against the height of penetration, it oscillates about the Washburn velocity—distance curve and performs Haines jumps. A general macroscopic equation is derived for the rate of wetting/dewetting of a porous medium having randomly distributed, finely divided particles or pores. Use is made of the Forchheimer equation, which is an extension of Darcy's equation to higher Reynolds numbers. Dissipative energy terms due to internal fluid calculaton and to irreversible movements of the meniscus strongly affect the initial rate of imbibition, but as the wetting progresses the Reynolds number decreases and Washburn's equation prevails.The application of percolation theory to wetting/dewetting phenomena in porous media is studied. The use of percolation theory by Kirkpatrick and Stinchcombe to find the electrical conductivity of inhomogeneous solid mixtures is adapted to determining the permeability of a porous medium to fluid flow. It is also shown how the relation between the “precolation probability” and the concentration of “unblocked” channels or pores can be applied in calculating the capillary pressure—desaturation curve in drainage. In particular, percolation theory predicts that a threshold pressure or break-through pressure is required before a non-wetting fluid can displace a wetting fluid in a porous medium. It is often convenient to use tree-like or branching lattice networks as models of a porous medium, because these are amenable to exact solutions in regard to percolation probability and permeability. The percolation properties of porous medium models which consist of lattice networks of cylindrical channels with a distribution of cross-sections and also of randomly packed rotund particles are examined and their relevance to wetting/dewetting phenomena discussed.  相似文献   

19.
Suspension concentration profiles during rapid gravity filter backwashing   总被引:1,自引:0,他引:1  
Rapid gravity, granular media filters are widely used in the water and wastewater treatment industries. Regular backwashing to clean the filters is a vital part of their efficient operation. Experimental data on the development of suspension concentration profiles through laboratory scale filter beds during the backwash process were obtained. Previous attempts to obtain and record backwash profiles of this type have been unsuccessful due to the limited range of existing turbidimeters. The results have been used to validate a new model developed by the authors.  相似文献   

20.
Conventional, mechanical fibrous filters made of microfibers exhibit a local minimum of fractional collection efficiency in the aerosol particle size-range between 100 and 500 nm, which is called the most penetrating particle size (MPPS). Simple theoretical calculations predict that this efficiency may be significantly increased using nanofibrous media. The main objective of this paper is an experimental verification of these expectations and simultaneously checking whether this anticipated gain in the filtration efficiency is not overpaid with an excessive pressure drop. For this purpose we developed a modified melt-blown technology, which allowed us to produce filters composed of micrometer as well as nanometer sized fibers. One conventional microfibrous filter and five nanofibrous filters were examined. The complete structural characteristics, pressure drop and efficiency of removal of aerosol particles with diameters 10-500 nm were determined for all media. The results of the experiments confirmed that using nanofibrous filters a significant growth of filtration efficiency for the MPPS range can be achieved and the pressure drop rises moderately. Simultaneously, we noticed a shift of the MPPS towards smaller particles. Consequently, the quality factor for bilayer systems composed of a microfibrous support and a nanofibrous facial layer was considerably higher than this one for a conventional microfibrous filter alone. Additionally, it was found that utilization of many-layer nanofibrous filters combined with a single microfibrous backing layer is even more profitable from the quality factor standpoint. Comparing experimental results with theoretical calculations based on the single-fiber theory we concluded that for microfibrous filters a fairly good agreement can be obtained if the resistance-equivalent fiber diameter is used in calculations instead of the mean count diameter determined from the SEM images analysis; in the latter case, filtration efficiency computed theoretically is slightly overestimated. This is even more evident for nanofibrous media, suggesting that in such case a structural filter inhomogeneity has a strong influence on the filter efficiency and its resistance and one should strive for minimization of this effect manufacturing nanofibrous filters as homogeneous as possible. We can finally conclude that fibrous filters containing nanofibers, which are produced using the melt-blown technique, are very promising and economic tools to enhance filtration of the most penetrating aerosol particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号