共查询到20条相似文献,搜索用时 78 毫秒
1.
遥感图像分割是目前学术界和工业界的一个研究热点,在城市规划、变化检测以及GIS信息构建等方面有着十分广泛的应用.然而,诸多复杂因素(如多变的尺度、多样化的拓扑形状以及复杂的背景和阴影等)使得遥感图像语义分割成为一项具有挑战性的任务.为此,提出一种基于多尺度信息融合的遥感图像语义分割深层卷积神经网络模型,该模型分为编码器和解码器2部分.在编码阶段,设计了基于DenseNet网络的跨卷积层级的多尺度特征融合策略,采用子区域全局平均池化及多尺度卷积处理复杂的背景区域;在解码阶段,为了准确地恢复图像的细节信息,设计了能够融合不同层级卷积特征的短解码器;最后,在整体模型构建方面设计了一种具有多输出的分层监督机制网络模型,从不同层级获取监督信息,可在充分利用监督信息的同时更好地引导网络的训练.在ISPRS公开数据集以及北京市遥感数据集上,通过实验验证了文中模型的有效性. 相似文献
2.
在图像语义分割中使用卷积网络进行特征提取时,由于最大池化和下采样操作的重复组合引起了特征分辨率降低,从而导致上下文信息丢失,使得分割结果失去对目标位置的敏感性。虽然基于编码器-解码器架构的网络通过跳跃连接在恢复分辨率的过程中逐渐细化了输出精度,但其将相邻特征简单求和的操作忽略了特征之间的差异性,容易导致目标局部误识别等问题。为此,文中提出了基于深度特征融合的图像语义分割方法。该方法采用多组全卷积VGG16模型并联组合的网络结构,结合空洞卷积并行高效地处理金字塔中的多尺度图像,提取了多个层级的上下文特征,并通过自顶向下的方法逐层融合,最大限度地捕获上下文信息;同时,以改进损失函数而得到的逐层标签监督策略为辅助支撑,联合后端像素建模的全连接条件随机场,无论是在模型训练的难易程度还是预测输出的精度方面都有一定的优化。实验数据表明,通过对表征不同尺度上下文信息的各层深度特征进行逐层融合,图像语义分割算法在目标对象的分类和空间细节的定位方面都有所提升。在PASCAL VOC 2012和PASCAL CONTEXT两个数据集上获得的实验结果显示,所提方法分别取得了80.5%和45.93%的mIoU... 相似文献
3.
本文提出一种基于全卷积神经网络的图像中文字目标语义分割算法和一种新的数据集制作与增广方法.该算法首先采用改进全卷积神经网络对图像中的文字目标进行初步分割,然后利用大津法进行二值化处理,划分出目标的大致区域,最后用全连接条件随机场算法进行修正,得到最终结果.该算法在测试集上准确率为85.7%,速度为0.181秒/幅,为图像目标区域的进一步分析做准备. 相似文献
5.
6.
针对因光照及物体颜色相近等问题导致的图像分割不准确问题,论文提出了一种结合深度信息的室内图像语义分割方法.首先利用像素之间的深度相似性,将相似图像几何结构无缝地合并到卷积神经网络(CNN)中,以生成像素级每个类别的一元势能响应;然后将图像深度信息融合到对比敏感的双核势能条件随机场(CRF)中,将其与先前的一元势能结合进行室内图像细化分割进而获得最终结果;最后采用NYUv2数据集、三个平均指标,将论文方法和已有的五种分割方法进行对比实验,结果表明论文方法有着良好表现,可以有效地改善室内图像分割精度. 相似文献
7.
针对合成孔径雷达图像的语义分割问题,构建了一个全新的TerraSAR-X语义分割数据集GDUT-Nansha。然后,为解决传统深度学习方法模型体积大,难以在样本数量偏少的合成孔径雷达图像数据集上应用的问题,对轻量化卷积神经网络ENet模型进行了分析和改造。提出了一种改进的轻量化卷积神经网络模型(revised weighted loss eNet,RWL-ENet);针对合成孔径雷达图像数据集样本不平衡问题,使用了带有权重的损失函数。通过和其他经典卷积神经网络语义分割模型的对比实验,验证了新数据集的可靠性;同时,在参数量和模型体积远远小于其他网络模型的前提下,RWL-ENet模型在像素精度、平均像素精度、平均交并比三个定量指标上分别达到了0.884、0.804和0.645。 相似文献
8.
该文提出了一种基于深度学习框架的图像语义分割方法,通过使用由相对深度点对标注训练的网络模型,实现了基于彩色图像的深度图像预测,并将其与原彩色图像共同输入到包含带孔卷积的全卷积神经网络中。考虑到彩色图像与深度图像作为物体不同的属性表征,在特征图上用合并连接操
作而非传统的相加操作对其进行融合,为后续卷积层提供特征图输入时保持了两种表征的差异。在两个数据集上的实验结果表明,该法可以有效提升语义分割的性能。 相似文献
9.
多聚焦图像融合(MFIF)是从不同源图像中获取聚焦区域,以形成全清晰图像的一种图像增强方法。针对目前MFIF方法主要存在的两个方面问题,即传统的空间域方法在其融合边界存在较强的散焦扩散效应(DSE)以及伪影等问题;深度学习方法缺乏还原光场相机生成的数据集,并且因需要大量手动调参而存在训练过程耗时过多等问题,提出了一种基于目标图像先验信息的无监督多聚焦图像融合方法。首先,将源图像本身的内部先验信息和由空间域方法生成的初始融合图像所具有的外部先验信息分别用于G-Net和F-Net网络输入,其中,G-Net和F-Net网络都是由UNet组成的深度图像先验(DIP)网络;然后,引入一种由空间域方法生成的参考掩膜辅助G-Net网络生成引导决策图;最后,该决策图联合初始融合图像对F-Net网络进行优化,并生成最终的融合图像。验证实验基于具有真实参考图像的Lytro数据集和融合边界具有强DSE的MFFW数据集,并选用了5个广泛应用的客观指标进行性能评价。实验结果表明,该方法有效地缩短了优化迭代次数,在主观和客观性能评价上优于8种目前最先进的MFIF方法,尤其在融合边界具有强DSE的数据集上表现得更有优势。 相似文献
10.
11.
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union)。最后,指出了图像语义分割领域未来可能的热点方向。 相似文献
12.
目的 对城市发展过程中产生的建筑固废进行处理,并将之转换为资源和能源,是极佳的保护环境的经济发展模式。然而人工分拣处理存在效率低、污染严重、对人身危害大等问题。目前工业界在探索一种有效的基于机械臂自动抓取的建筑固废自动分拣系统,其中图像分割技术是非常必要的一个环节。但是工业现场的环境因素造成固废对象的颜色严重退化,会影响最终的固废对象分割。本文针对建筑固废图像分割难度大的现状,提出一种基于多模态深度神经网络的方法来解决固废对象分割问题。方法 首先, 在颜色退化严重的场景下,把RGB图像和深度图一起作为深度卷积神经网络的输入,利用深度卷积神经网络进行高维特征学习,通过softmax分类器获得每个像素的标签分配概率。其次,基于新的能量函数建立全连接条件随机场,通过最小化能量函数寻找全局最优解来分割图像,从而为每一类固废对象产生一个独立的分割块。最后,利用局部轮廓信息计算深度梯度,实现同一类别的不同实例的固废对象精确分割。结果 在固废图像测试集上,该方法取得了90.02%均像素精度和89.03%均交并比(MIOU)。此外,与目前一些优秀的语义分割算法相比,也表现出了优越性。结论 本文方法能够对每一个固废对象同时进行有效的分割和分类,为建筑垃圾自动分拣系统提供准确的固废对象轮廓和类别信息,从而方便实现机械臂的自动抓取。 相似文献
13.
目的 超声医师手动探查与采集胎儿心脏切面图像时,常因频繁的手动暂停与截图操作而错失心脏切面最佳获取时机。而单纯采用深层视觉目标检测或分类网络自动获取切面时,因无法确保网络重点关注切面图像中相对较小的心脏区域的细粒度特征,导致高误检率;另外,不同的心脏解剖部件的最佳成像时刻也常常不同步。针对上述问题,提出一种目标检测与分类网络相结合,同时融合关键帧间时序关系的标准四腔心(four-chamber,4CH)切面图像自动获取算法。方法 首先,利用自行构建的胎儿心脏超声切面数据集训练目标检测网络,实现四腔心区域和降主动脉区域的快速准确定位。接着,当检测到在一定时间窗内的视频帧存在降主动脉区域时,将包含四腔心目标的候选区域提取后送入利用自建的标准四腔心区域图像集训练好的分类网络,进一步分类出标准四腔心区域。最后,通过时序关系确定出可靠的降主动脉区域,将可靠降主动脉的检测置信度及同一时间窗内各个切面图像中四腔心区域在分类模型中的输出,加权计算得到标准四腔心切面图像的得分。结果 采用本文构建的数据集训练的YOLOv5x(you only look once version 5 extra large... 相似文献
14.
针对复杂视频场景中难以分割特定目标的问题,提出一种基于双重金字塔网络(DPN)的视频目标分割方法。首先,通过调制网络的单向传递让分割模型适应特定目标的外观。具体而言,从给定目标的视觉和空间信息中学习一种调制器,并通过调制器调节分割网络的中间层以适应特定目标的外观变化。然后,通过基于不同区域的上下文聚合的方法,在分割网络的最后一层中聚合全局上下文信息。最后,通过横向连接的自左而右结构,在所有尺度中构建高阶语义特征图。所提出的视频目标分割方法是一个可以端到端训练的分割网络。大量实验结果表明,所提方法在DAVIS2016数据集上的性能与较先进的使用在线微调的方法相比,可达到相竞争的结果,且在DAVIS2017数据集上性能较优。 相似文献
15.
目的 将半监督对抗学习应用于图像语义分割,可以有效减少训练过程中人工生成标记的数量。作为生成器的分割网络的卷积算子只具有局部感受域,因此对于图像不同区域之间的远程依赖关系只能通过多个卷积层或增加卷积核的大小进行建模,但这种做法也同时失去了使用局部卷积结构获得的计算效率。此外,生成对抗网络(generative adversarial network, GAN)中的另一个挑战是判别器的性能控制。在高维空间中,由判别器进行的密度比估计通常是不准确且不稳定的。为此,本文提出面向图像语义分割的半监督对抗学习方法。方法 在生成对抗网络的分割网络中附加两层自注意模块,在空间维度上对语义依赖关系进行建模。自注意模块通过对所有位置的特征进行加权求和,有选择地在每个位置聚合特征。因而能够在像素级正确标记值数据的基础上有效处理输入图像中广泛分离的空间区域之间的关系。同时,为解决提出的半监督对抗学习方法的稳定性问题,在训练过程中将谱归一化应用到对抗网络的判别器中,这种加权归一化方法不仅可以稳定判别器网络的训练,并且不需要对唯一的超参数进行密集调整即可获得满意性能,且实现简单,计算量少,即使在缺乏互补的正则化... 相似文献
16.
目的 目前主流物体检测算法需要预先划定默认框,通过对默认框的筛选剔除得到物体框。为了保证足够的召回率,就必须要预设足够密集和多尺度的默认框,这就导致了图像中各个区域被重复检测,造成了极大的计算浪费。提出一种不需要划定默认框,实现完全端到端深度学习语义分割及物体检测的多任务深度学习模型(FCDN),使得检测模型能够在保证精度的同时提高检测速度。方法 首先分析了被检测物体数量不可预知是目前主流物体检测算法需要预先划定默认框的原因,由于目前深度学习物体检测算法都是由图像分类模型拓展而来,被检测数量的无法预知导致无法设置检测模型的输出,为了保证召回率,必须要对足够密集和多尺度的默认框进行分类识别;物体检测任务需要物体的类别信息以实现对不同类物体的识别,也需要物体的边界信息以实现对各个物体的区分、定位;语义分割提取了丰富的物体类别信息,可以根据语义分割图识别物体的种类,同时采用语义分割的思想,设计模块提取图像中物体的边界关键点,结合语义分割图和边界关键点分布图,从而完成物体的识别和定位。结果 为了验证基于语义分割思想的物体检测方法的可行性,训练模型并在VOC(visual object classes)2007 test数据集上进行测试,与目前主流物体检测算法进行性能对比,结果表明,利用新模型可以同时实现语义分割和物体检测任务,在训练样本相同的条件下训练后,其物体检测精度优于经典的物体检测模型;在算法的运行速度上,相比于FCN,减少了8 ms,比较接近于YOLO(you only look once)等快速检测算法。结论 本文提出了一种新的物体检测思路,不再以图像分类为检测基础,不需要对预设的密集且多尺度的默认框进行分类识别;实验结果表明充分利用语义分割提取的丰富信息,根据语义分割图和边界关键点完成物体检测的方法是可行的,该方法避免了对图像的重复检测和计算浪费;同时通过减少语义分割预测的像素点数量来提高检测效率,并通过实验验证简化后的语义分割结果仍足够进行物体检测任务。 相似文献
17.
目的 针对反恐、安防领域利用监控视频进行步态识别时由光照、拍摄角度、遮挡等多协变量引起的轮廓缺失、人体阴影和运算时间等问题,提出了一种基于RPGNet(Regin of Interest+Parts of Body Semantics+GaitNet)网络的步态人体语义分割方法。方法 该方法按照功能划分为R(region of interest)模块、P(parts of body semantics)模块和GNet(GaitNet)模块。R模块提取人体步态感兴趣区域,起到提升算法效率和图像去噪的作用。P模块借助LabelMe开源图像注释工具进行步态人体部位语义标注。GNet模块进行步态人体部位语义训练与分割。借鉴ResNet和RefineNet网络模型,设计了一种细节性步态语义分割网络模型。结果 对步态数据库1 380张图片进行了测试,RPGNet方法与6种人体轮廓分割方法进行了对比实验,实验结果表明RPGNet方法对细节和全局信息处理得都很精确,在0°、45°和90°视角都表现出较高的分割正确率。在多人、戴帽和遮挡条件下,实验结果表明RPGNet方法人体分割效果良好,能够满足步态识别过程中的实时性要求。结论 实验结果表明,RPGNet步态人体语义分割方法在多协变量情况下能够有效进行步态人体语义分割,同时也有效提高了步态识别的识别率。 相似文献
18.
由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。算法基于一种多流结构的深度神经网络,包括特征提取网络、对象骨架检测子网络、显著性对象检测子网络和跨任务连接部件四个部分。首先,在显著性对象子网络的训练和测试阶段,通过对象骨骼检测子网络学习对象的结构信息,并利用跨任务连接部件使得显著性对象检测子网络能自动编码对象骨骼子网络学习的信息,从而感知对象的整体结构,克服对象区域检测不完整问题;其次,为了进一步提高所提方法的准确率,利用全连接条件随机场对检测结果进行进一步的优化。在三个公共数据集上的实验结果表明,该算法在检测的准确率和运行效率上均优于现有存在的基于深度学习的算法,这也说明了在深度神经网络中考虑对象结构信息的捕获是有意义的,可以有助于提高模型准确率。 相似文献
19.
目的 针对极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)小样本分类问题,基于充分挖掘有限样本的极化、空间特征考虑,提出一种由高阶条件随机场(conditional random field,CRF)引导的多分支分类网络模型。方法 利用Yamaguchi非相干目标分解方法,构建每个像素的极化特征向量。设计了由高阶CRF能量函数引导的多卷积分支特征提取网络,将像素点极化特征向量作为输入,分别提取像素点的像素特征、邻域特征和位置特征信息。将以上特征进行加和融合,并输入到softmax分类器中得到预分类结果。利用超像素方法对预分类结果图进行进一步修正和调优,平滑相邻像素之间的特异性和相似性。结果 采用1%的采样率对两组真实的极化SAR数据进行测试。同时,为了更好地模拟实际应用中训练样本位置分布不均匀的情况,考虑了空间不相交采样方法作为对比实验。综合两种采样策略的实验结果表明,相较于只利用像素级特征或简单利用空间特征的方法,本文方法总分类精度平均提升7%~10%,不同地物类别的分类精准度均在90%以上,运行速度相比于支持向量机(support vector machine,SVM)提高了2.5倍以上。结论 通过构建高阶CRF引导的卷积神经网络,将像素特征信息、同质区域特征和地理位置信息进行融合,有效建立了像素级和对象级数据之间的尺度关联,进一步扩充了像素点之间的空间依赖性,提取到了更强大更准确的表征特征,显著提高了标记样本数量较少情况下的卷积网络模型的分类性能,进一步保证了地物目标散射机制表征的全面性和可靠性。 相似文献
20.
目的 视频中的目标分割是计算机视觉领域的一个重要课题,有着极大的研究和应用价值。为此提出一种融合外观和运动特征的在线自动式目标分割方法。方法 首先,融合外观和运动特征进行目标点估计,结合上一帧的外观模型估计出当前帧的外观模型。其次,以超像素为节点构建马尔可夫随机场模型,结合外观模型和位置先验把分割问题转化为能量最小化问题,并通过Graph Cut进行优化求解。结果 最后,在两个数据集上与5种标准方法进行了对比分析,同时评估了本文方法的组成成分。本文算法在精度上至少比其他的目标分割算法提升了44.8%,且具有较高的分割效率。结论 本文通过融合外观与运动特征实现在线的目标分割,取得较好的分割结果,且该方法在复杂场景中也具有较好的鲁棒性。 相似文献