首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。  相似文献   

2.
近年来针对合成孔径雷达(synthetic aperture radar,SAR)图像中缺乏颜色和纹理细节的舰船检测技术在深度学习领域中得到了广泛研究,利用深度学习技术可以有效避免传统的复杂特征设计,并且检测精度得到极大改善.针对舰船目标检测框具有高长宽比和密集排列问题,提出一种基于改进YOLOv5的目标检测方法.该方...  相似文献   

3.
4.
合成孔径雷达图像中舰船目标的尺度差异大、小目标居多,这给检测造成一定的困难。针对此问题,提出了一种基于改进YOLOv3-SPP的SAR图像舰船目标检测算法。改进原模型FPN,利用主干网络的第二次下采样输出的特征来建立尺度为104×104的预测,并将各个尺度进行紧密连接;用K-median++聚类算法重新对锚框聚类来得到适合舰船特征的先验框。使用YOLOv3-SPP模型和改进的YOLOv3-SPP模型以及其他典型目标检测算法在AIR-SARship-1.0与SSDD数据集上进行对比实验。实验结果表明,相比于原始算法,改进后的算法能更有效地检测SAR图像舰船目标,检测精度分别提升了3.2%、4.4%。在数据集3个不同输入尺度下,检测精度都有所提升。相比于其他检测算法,改进后的算法在保证实时性的情况下具有更高的检测精度。  相似文献   

5.
目前,基于深度学习的合成孔径雷达(SAR)舰船目标检测方法受到广泛关注。但因为模型参数量大、运算内存高等问题限制了其实际应用。通过学生网络模仿教师网络,知识蒸馏被视作一种高效的模型压缩方法。然而,大部分的知识蒸馏算法只针对常见的可见光图像任务,将其直接应用到复杂的SAR图像舰船目标检测上性能表现不佳。通过分析,出现上述性能不佳现象有以下两个原因:(1)前景背景面积严重失衡;(2)缺乏对前景和背景像素的关系建模。针对上述问题,提出基于解耦特征的拓扑距离知识蒸馏算法。前景和背景解耦蒸馏可以缓解前景背景失衡问题。通过解耦特征拓扑距离蒸馏,学生网络可以从教师网络学习到前景背景之间的关系,增强对背景噪声鲁棒性。实验结果表明,相比许多蒸馏算法,所提出的算法可以十分有效地提升学生网络在SAR图像舰船目标检测精度。比如,基于ResNet18-C4骨干网络的Faster R-CNN模型在HRSID数据集上AP提升6.85个百分点,从31.81%提升到38.66%。  相似文献   

6.
针对遥感图像背景复杂、小目标多、特征提取难等问题,提出了一种注意力特征融合的快速遥感图像目标检测算法——YOLO-Aff。该算法设计了一种带通道注意力的主干网络模块(ECALAN)以及模糊池(BP)模块来减小下采样带来的损失。此外,采用了一种无跨步卷积的特征金字塔网络(SPD-FPN)结合SimAM注意力特征融合模块(CBSA)来增强特征的跨尺度融合能力。最后,通过使用Wise-IoU作为网络的坐标损失来优化样本不均衡问题。实验结果表明,改进的YOLO-Aff算法在NWPU VHR-10数据集上的mAP值达到96%,较原算法mAP提高了2.9个百分点,为遥感图像的快速、高精度目标检测提供了新的解决方案。  相似文献   

7.
严春满  王铖 《控制与决策》2023,38(1):239-247
针对合成孔径雷达(SAR)图像中小目标舰船检测困难的问题,提出基于单次多盒检测器的一种特征增强小目标检测算法.首先提出一种混合多特征提取模块,采用并行的普通卷积、不同空洞率的空洞卷积以及非对称卷积形成与舰船目标相匹配的感受野,以提高浅层网络对复杂形状小目标的特征提取能力;然后提出一种邻近多特征融合模块,将特征信息进行更科学的深层次融合,对小目标特征进一步增强;最后根据SAR图像单通道的特性,缩减特征提取网络VGG-16的冗余特征通道.在公开的SSDD数据集上与其他检测算法进行对比实验,实验结果表明,所提出方法将平均精确度提升至93.44%,检测速度提升至41.8FPS,参数量减少为18.74M,综合性能优于其他检测算法.  相似文献   

8.
该文以可见光图像舰船目标为研究对象,提出了用多谱图像和全色图像进行特征融合来检测舰船目标的方法。该方法首先利用多谱图像实现水域和陆地的分离,然后把分类结果映射到全色图像上从而实现在全色图像上区分水域和陆地;屏蔽陆地后用Otsu方法分别在多谱图像和全色图像上对目标进行分割,并提取目标特征,最后对目标特征进行融合来检测舰船目标。实验证明该方法有效可行。  相似文献   

9.
针对合成孔径雷达图像目标在背景复杂、场景较大、干扰杂波较多情况下检测困难的问题,设计一种层数较少的卷积神经网络,在完备数据集验证其特征提取效果后,作为基础特征提取网络使用。在训练数据集中补充复杂的大场景下目标训练样本。同时设计一种多层次卷积特征融合网络,增强对大场景下小目标的检测能力。通过对候选区域网络和目标检测网络近似联合训练后,得到一个完整的可用于不同的复杂大场景下SAR图像目标检测的模型。实验结果表明,该方法在SAR图像目标检测方面具有较好的效果,在测试数据集中具有0.86的AP值。  相似文献   

10.
针对遥感图像内容丰富且复杂,具有目标种类多、密集分布和尺寸变化剧烈等特点,导致遥感图像中目标多尺度尤其是小目标难以检测的问题,提出一种基于自适应多尺度特征融合(AMFF)和注意力特征增强(AFE)的无锚框遥感图像目标检测算法.首先将主干网络提取的图像特征输入AMFF,自适应地融合多个尺度的特征,增加特征复用,提升网络的多尺度特征表达能力;然后将AMFF输出的特征输入到加入了AFE模块的检测头中,AFE通过结合多分支空洞卷积与注意力机制,在提高网络对目标尺度的泛化能力的同时增强有效特征信息;最后进行分类和回归,得到检测结果.在DIOR和NWPU VHR-10公开数据集上,与多种主流目标检测算法的实验结果表明,所提算法在2个数据集上的平均检测精度分别为72.4%和87.4%,较基线网络分别提升9.4和13.5个百分点,比次优结果分别提升6.3和1.7个百分点;平均检测精度高于主流目标检测算法,较基线网络的平均检测精度显著提高,能够更加准确地检测小尺度目标,同时有效地提升多尺度目标的检测精度.  相似文献   

11.
目的 图像分割的中心任务是寻找更强大的特征表示,而合成孔径雷达(synthetic aperture radar, SAR)图像中斑点噪声阻碍特征提取。为加强对SAR图像特征的提取以及对特征充分利用,提出一种改进的全卷积分割网络。方法 该网络遵循编码器—解码器结构,主要包括上下文编码模块和特征融合模块两部分。上下文编码模块(contextual encoder module, CEM)通过捕获局部上下文和通道上下文信息增强对图像的特征提取;特征融合模块(feature fusion module, FFM)提取高层特征中的全局上下文信息,将其嵌入低层特征,然后将增强的低层特征并入解码网络,提升特征图分辨率恢复的准确性。结果 在两幅真实SAR图像上,采用5种基于全卷积神经网络的分割算法作为对比,并对CEM与CEM-FFM分别进行实验。结果显示,该网络分割结果的总体精度(overall accuracy, OA)、平均精度(average accuracy, AA)与Kappa系数比5种先进算法均有显著提升。其中,网络在OA上表现最好,CEM在两幅SAR图像上OA分别为91.082%和90...  相似文献   

12.
目的 在近岸合成孔径雷达(synthetic aperture radar, SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法 首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果 在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border d...  相似文献   

13.
目的 针对合成孔径雷达(synthetic aperture radar, SAR)图像噪声大、成像特征不明显,尤其在复杂场景更容易出现目标误检和漏检的问题,提出了一种融合多重机制的SAR舰船检测方法,用于提高SAR舰船检测的精度。方法 在预处理部分,设计了U-Net Denoising模块,通过调整噪声方差参数L的范围来抑制相干斑噪声对图像的干扰。在YOLOv7(you only look once v7)主干网络构建MLAN_SC(maxpooling layer aggregation network that incorporate select kernel and contextual Transformer)结构,加入SK(selective kernel)通道注意力机制至下采样阶段,增强关键信息提取能力和特征表达能力。为解决MP(multiple pooling)结构中上下分支特征不平衡的问题,改善误检情况,融入上下文信息提取模块(contextual Transformer block, COT),利用卷积提取上下文信息,将局部信息和全局信息结合起来,使图像特征能够更有效地提取出来。在头部引入SPD卷积(space-to-depth convolution, SPD-Conv),增强小目标的检测能力。用WIoU(wise intersection over union)损失函数替换CIoU(complete intersection over union)损失函数,运用动态聚焦机制,在复杂图像上加强对目标的定位能力。结果 在SSDD(SAR ship detection dataset)数据集和HRSID (high-resolution SAR images dataset)数据集上进行了实验对比,结果表明,改进后的方法相比于YOLOv7,AP(average precision)可达到99.25%和89.73%,分别提升了4.38%和2.57%,准确率和召回率为98.41%,93.24%和94.79%,81.83%,优于对比方法。结论 本文通过融合多重机制改进YOLOv7方法,提升了对目标的定位能力,显著改善了SAR舰船检测中复杂舰船的误检和漏检情况,进一步提高了SAR舰船检测精度。  相似文献   

14.
目的 掌握海上船舶分布状态对于海上交通流分析和通航安全管理具有重要作用。遥感技术,特别是星载合成孔径雷达(SAR)技术的发展,为大范围海上船舶检测提供了有效的手段,但受SAR成像机制影响,海上船舶目标在星载SAR影像上通常存在着不同程度的方位向模糊噪声,这些噪声易被误判为船舶,导致船舶识别中虚警率提高。方法 本文简述了方位向模糊噪声的产生原因,提出了一种新的星载SAR影像上船舶方位向模糊去除算法,该算法的核心是构建目标方位向角度一致性、方位向位置偏移距离和方位向模糊能量衰减3个判别规则,对潜在SAR影像亮斑目标进行逐层筛选,实现船舶真实目标和方位向模糊目标的判别。结果 选取中国渤海海域和黄海海域的30 m分辨率的Radarsat-2数据进行案例分析,并与船舶自动识别系统(AIS)实测数据进行比对校验,结果表明,传统的双参数恒虚警率(CFAR)算法和基于K分布的CFAR等算法对于船舶难以剔除方位向模糊,容易造成虚警,而本文算法对实验影像的船舶方位向模糊去除准确率优于95.8%,能够有效剔除船舶方位向模糊。结论 该算法为星载SAR影像上船舶方位向模糊去除提供了新的手段,有助于提高SAR影像上船舶目标检测的准确性。  相似文献   

15.
目的 船舶在合成孔径雷达(synthetic aperture radar, SAR)图像中的检测是研究热点,但目前适合近岸舰船检测的方法并不多。在SAR图像中,近岸舰船受到岸上建筑物的干扰严重,尤其是对于排列紧密的近岸船舶来说,其对比度相似,很难区分船舶与背景。为解决近岸舰船检测困难问题,提出了一种基于加权双向注意金字塔网络的近岸舰船检测方法。方法 本文在FCOS (fully convolutional one-stage)网络的基础上提出了一种新的双向特征金字塔网络。将卷积注意力机制模块(convolutional block attention module,CBAM)与金字塔网络的每个特征图进行连接,提取丰富的语义信息特征;借鉴PANet (path aggregation network)的思想,添加自下而上的金字塔模块,突出不同尺度船舶的显著特征。最后提出了一种加权特征融合方式,使特征图提取的特征信息的着重点不同,提高舰船检测精度。结果 本文在公开的SAR图像舰船数据集SSDD (SAR ship detection dataset)上进行实验。实验结果表明,相比原FCOS方法,本文方法的检测精度提高了9.5%;与对比方法相比,本文方法在同等条件下的检测精度达到90.2%。在速度方面,本文方法比SSD提高0.6 s,比Faster R-CNN (region convolutional neural network)提高1.67 s,明显优于对比方法。结论 本文通过改进特征网络和特征融合方式,提高了算法对SAR图像舰船目标检测中背景复杂、排列紧密的近岸舰船目标的定位效果,有效增强了对舰船目标定位的准确性。  相似文献   

16.
由于获取地物波谱信息的波段范围及成像方式的不同,SAR与多光谱图像所得到的信息有很大差异,而且SAR图像会受到严重的相干斑噪声干扰,因此SAR与多光谱图像的融合很难获得满意的效果。考虑到非下采样Contourlet变换(NSCT)相比于其他多尺度几何分析方法的优势,提出了一种NSCT与脉冲耦合神经网络(PCNN)相结合的SAR与多光谱图像融合方法。源图像首先经过NSCT分解获得不同尺度多个方向下的分解系数,将分解系数的高斯拉普拉斯算子能量作为脉冲耦合神经网络模型的输入,具有较大点火频率的系数将被选择作为融合图像的系数,最后经过NSCT重构得到最终的融合图像。实验结果表明,这种算法无论在主观视觉还是在客观指标上都要优于之前的许多算法。  相似文献   

17.
合成孔径雷达(synthetic aperture radar, SAR)与光学图像融合旨在利用卫星传感器的成像互补性, 生成更全面的地貌信息. 然而, 由于各单一卫星传感器数据分布的异质性和成像物理机制的差异, 现有网络模型在融合过程中往往存在成像精度低的问题. 为了解决上述问题, 本文提出DNAP-Fusion, 一种新的结合双非局部注意力感知的SAR和光学图像金字塔细节融合网络(dual non-local-aware-based pyramid fusion net). 该方法利用双非局部注意力模块, 在空间尺度逐渐减小的多级图像金字塔中提取SAR图像的结构信息和光学图像的纹理细节. 然后在空间和通道维度上融合它们的互补特征. 然后, 通过图像重构将融合特征注入上采样光学图像中, 得到最终的融合结果. 此外, 在网络训练之前, 采用图像封装决策来增强同一场景中SAR和光学图像中目标之间的共性关系. 定性和定量的实验结果表明, 提出的方法优于现有融合方法, 其中客观评价指标中的相关系数(correlation coefficient, CC)为0.990 6, 峰值信噪比(peak signal to noise ratio, PSNR)为32.156 0 dB. 此外, 所提方法有效地融合了SAR图像和可见光图像的互补特征, 为提高遥感图像融合的精度和有效性提供了一种有价值的思路和方法.  相似文献   

18.
针对不同波段SAR图像的融合,该文提出了一种在Contourlet变换域融合的方法,利用Contourlet变换的充分表示图像边缘信息的能力,将图像分解为低通系数和不同方向的高频系数,对方向高频系数定义一个边缘信息量测指标,选择量测指标大的系数作为融合系数,解决了小波变换融合中图像边缘信息容易丢失的问题。通过对两波段SAR图像进行融合实验并与小波变换融合结果比较,在视觉特性与统计因子客观评价上均取得了更好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号