首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen carriers(OCs) with perovskite structure are attracting increasing interests due to their redox tunability by introducing various dopants in the structure. In this study, LaNi_xFe_(1-x)O_3(x = 0, 0.1, 0.3, 0.5, 0.7,1.0) perovskite OCs have been prepared by a citric acid–nitrate sol–gel method, characterized by means of X-ray diffraction(XRD) analysis and tested for algae chemical looping gasification in a fixed bed reactor. The effects of perovskite types, OC/biomass mass ratio(O/B), gasification temperature and water injection rate on the gasification performance were investigated. Lower Ni-doped(0≤x≤0.5) perovskites crystalized in the rhombohedra system which was isostructural with LaNiO_3, while those with composition 0.5≤x≤1 crystalized in the orthorhombic system. Despite the high reactivity for LaNiO_3, LaNi_(0.5) Fe_(0.5) O_3(LN5 F5) was found to be more stable at a high temperature and give almost as good results as LaNiO_3 in the formation of syngas. The relatively higher syngas yield of 0.833 m~3·kg~(-1) biomass was obtained under the O/B of 0.4, water injection rate of 0.3 ml·min~(-1) and gasification temperature at 850 °C. Continuous high yield of syngas was achieved during the first 5 redox cycles, while a slight decrease in the reactivity for LN5 F5 after 5 cycles was observed due to the adhesion of small grains occurring on the surface of OCs. However, an obvious improvement in the gasification performance was attained for LN5 F5 compared to raw biomass direct gasification, indicating that LN5 F5 is a promising functional OC for chemical looping catalytic gasification of biomass.  相似文献   

2.
基于NiO载氧体的煤化学链燃烧实验   总被引:2,自引:2,他引:2  
高正平  沈来宏  肖军 《化工学报》2008,59(5):1242-1250
采用流化床反应器并以水蒸气作为气化-流化介质,研究了以NiO为载氧体在800~960℃内的煤化学链燃烧反应特性。实验结果表明,载氧体与煤气化产物在反应器温度高于900℃体现了高的反应活性。随着流化床反应器温度的提高,气体产物中CO2的体积浓度(干基)呈单调递增;CO、H2、CH4的体积浓度(干基)呈单调递减;煤中碳转化为CO2的比率逐渐递增,碳的残余率逐渐递减。反应器出口气体CO2、CO、H2、CH4的生成率随反应时间呈单峰特性,H2生成率的峰值远小于CO的峰值;且随反应器温度升高,CO2生成率升高,CO、H2、CH4的生成率降低。反应温度高于900℃时,流化床反应器NiO载氧体煤化学链燃烧在9 min之内就基本完成,CO2含量高于92%。  相似文献   

3.
颜蓓蓓  李志宇  李健  刘彬  陈冠益 《化工进展》2020,39(10):3956-3965
生物质化学链气化(chemical looping gasification, CLG)为生物质能源的利用开辟了新途径,氧载体在CLG过程中具有重要作用,其性能是影响CLG反应过程的关键因素。本文重点阐述了CLG技术中氧载体的性能评价指标、类型、制备方法及其对CLG过程中产生焦油的影响。通过对比分析目前研究成果,指出Fe基氧载体在生物质CLG过程中应用最广泛,而Ni基氧载体具有较高的活性和较大的载氧能力,且对于CLG副产物焦油具有较高的催化转化效率。未来该领域研究的重点方向是开发高活性且环境友好的氧载体,推进CLG工艺的工业应用。本文为今后生物质CLG氧载体的开发与优化提供了借鉴。  相似文献   

4.
A new autothermal route to produce hydrogen from natural gas via chemical looping technology was investigated. Tests were conducted in a micro-fixed bed reactor loaded with 200 mg of NiO/NiAl2O4 as oxygen carrier. Methane reacts with a nickel oxide in the absence of molecular oxygen at 800 °C for a period of time as high as 10 min. The NiO is subsequently contacted with a synthetic air stream (21% O2 in argon) to reconstitute the surface and combust carbon deposited on the surface. Methane conversion nears completion but to minimize combustion of the hydrogen produced, the oxidation state of the carrier was maintained below 30% (where 100% represents a fully oxidized surface). Co-feeding water together with methane resulted in stable hydrogen production. Although the carbon deposition increased with time during the reduction cycle, the production rate of hydrogen remained virtually constant. A new concept is also presented where hydrogen is obtained from methane with inherent CO2 capture in an energy neutral 3-reactors CFB process. This process combines a methane combustion step where oxygen is provided via an oxygen carrier, a steam methane reforming step catalyzed by the reduced oxygen carrier and an oxidizing step where the O-carrier is reconstituted to its original state.  相似文献   

5.
In this study, the production of H2 utilizing chemical looping combustion (CLC) in a methane dry reformer assisted by H2 perm-selective membranes in a CLC-DRM configuration has been investigated. CLC via employment of a Mn-based oxygen carrier generates large amounts of heat in addition to providing CO2 as the raw material for the dry reforming (DR) reaction. The main advantage of the CLC-DRM configuration is the simultaneous capturing and consuming of CO2 as a greenhouse gas for H2 production.A steady state one dimensional heterogeneous catalytic reaction model is applied to analyze the performance and applicability of the proposed CLC-DRM configuration. Simulation results show that CH4 is completely consumed in the fuel reactor (FR) of the CLC-DRM and pure CO2 is captured by condensation of H2O. Also, CH4 conversion and H2 yield reach 73.46% and 1.459 respectively at the outlet of the DR side in the CLC-DRM. Additionally, 4562 kmol h−1 H2 is produced in the DR side of the CLC-DRM.Finally, results indicate that by increasing the FR feed temperature up to 880 K, CH4 conversion and H2 production are enhanced to 81.15% and 4790 kmol h−1 respectively.  相似文献   

6.
The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes. This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets on the chemical looping oxidative propane dehydrogenation (CL-ODH). During CL-ODH, the oxygen concentration at the pellet surface initially decreased and then maintained stable before the final decrease. At the stage with the stable surface oxygen concentration, the reaction showed a stable C3H6 formation rate and high C3H6 selectivity. Therefore, based on Fick’s second law, the oxygen distribution and evolution in the oxygen carrier at this stage were further analyzed. It was found that main reactions of selective oxidation and over-oxidation were controlled by the oxygen bulk diffusion. C3H8 conversion rate kept decreasing during this stage due to the decrease of the oxygen flux caused by the decline of oxygen gradient within the oxygen carrier, while C3H6 selectivity increased due to the decrease of over-oxidation. In addition, reaction rates could increase with the propane partial pressure due to the increase of the oxygen gradient within the oxygen carrier until the bulk transfer reached its limit at higher propane partial pressure. This study provides fundamental insights for the diffusion-controlled chemical looping reactions.  相似文献   

7.
Phosphogypsum (PG) is a solid waste produced in the wet process of producing phosphoric acid.Lignite is a kind of promising chemical raw material.However,the high sulfur of lignite limits the utilization of lig-nite as a resource.Based on fluidized bed experiments,the optimal reaction conditions for the production syngas by lignite chemical looping gasification (CLG) with PG as oxygen carrier were studied.The study found that the optimal reaction temperature should not exceed 1123 K;the mole ratio of water vapor to lignite should be about 0.2;the mole ratio of PG oxygen carrier to lignite should be about 0.6.Meanwhile,commercial software Comsol was used to establish a fuel reaction kinetics model.Through computational fluid dynamics (CFD) numerical simulation,the process of reaction in fluidized bed were well captured.The model was based on a two-fluid model and coupled mass transfer,heat transfer and chemical reac-tions.This study showed that the fluidized bed presents a flow structure in which gas and solid coexist.There was a high temperature zone in the middle and lower parts of the fluidized bed.It could be seen from the results of the flow field simulated that the fluidized bed was beneficial to the progress of the gasification reaction.  相似文献   

8.
王旭锋  刘晶  刘丰  杨应举 《化工学报》2019,70(4):1583-1590
在热重分析仪和固定床反应器上对基于CoFe2O4载氧体的生物质化学链气化反应特性进行了研究,考察了载氧体与生物质质量比、水蒸气、反应温度对生物质化学链气化反应特性的影响,同时也对载氧体的循环反应性能进行了研究。通过XRD及SEM对新制备的和反应后的载氧体进行了表征。热重结果表明:CoFe2O4能够提供晶格氧,有效促进生物质气化。当CoFe2O4与生物质质量比为0.8,水蒸气体积分数为50%,温度为900 ℃时,气化反应效果最好。5次循环反应后,仍能获得较高品质的合成气,载氧体能够循环再生且未出现明显烧结团聚。  相似文献   

9.
Chemical looping gasification (CLG) of Ningdong coal by using Fe2O3 as the oxygen carriers (OCs) was studied, and the gasification characteristics were obtained. A computation fluid dynamics (CFD) model based on Eulerian‐-Lagrangian multiphase framework was established, and a numerical simulation the coal chemical looping gasification processes in fuel reactor (FR) was investigated. In addition, the heterogeneous reactions, homogeneous reactions and Fe2O3 oxygen carriers' reduction reactions were considered in the gasification process. The characteristics of gas flow and gasification in the FR were analyzed and it was found that the experiment results were consistent with the simulation values. The results show that when the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃ and the water vapor volume flow rate was 2.2 ml·min-1, the mole fraction of syngas reached a maximum value of the experimental result and simulation value were 71.5% and 70.2%, respectively. When the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃, and the water vapor volume flow was 1.8 ml·min-1; the gasification efficiency reached the maximum value was 62.2%, and the maximum carbon conversion rate was 84.0%.  相似文献   

10.
采用湿式混合成粒法得到了一种复合型钙基载氧体,并分别在综合热分析仪和流化床上考察了其反应活性和循环反应性能。结果如下:浸渍Ni离子能够明显降低载氧体与煤反应的起始温度,加快反应速率,缩短反应时间。增加Ni离子浸渍量对反应速率的影响不明显,但反应时间略有缩短。选择CaAlNi10载氧体进行了10次还原-氧化循环实验,固体产物和气体产物分析表明NiO在循环过程中对S的释放有一定控制作用;CaAlNi载氧体具有较高的再生率和良好的持续循环反应能力。结果表明,制备的CaAlNi载氧体适用于工业生产。  相似文献   

11.
Understanding and modulating the interaction between various reactive molecules and oxygen carriers are the key issue to achieve process intensification of chemical looping technology. C1 chemical molecules play an important role in many reactions involved with chemical looping processes. However, up to now, there is still a lack of systematic and in-depth understanding of the adsorption mechanism of C1 molecules on the surface of oxygen carriers (OCs). In this work, the intrinsic interaction between a series of C1 molecules composed of CH4, CO, CO2, CH3OH, HCHO and HCOOH and surface of NiO OCs in the chemical looping process have been studied using density functional theory calculations. Various adsorption configurations of C1 molecules and also different adsorption sites of NiO have been considered. The structural features of stable configuration of C1 molecules on the surface of NiO OCs have been obtained. Further, the interacted sites, types and strengths of C1 molecules on the surface of NiO have been directly pictured by the independent gradient model methods. Also, the nature of the interaction between C1 molecule and NiO surface has been investigated with the aid of energy decomposition analysis from a quantitative view.  相似文献   

12.
铜渣载镍催化剂催化气化松木屑的实验研究   总被引:1,自引:0,他引:1  
采用二级固定床管式反应器,以松木屑为原料,水蒸气为气化介质,载镍铜渣为催化剂,结合XRD、TEM、BET、SEM、H2-TPR等表征手段,考察了不同的镍载量、催化剂焙烧温度以及催化温度对生物质催化气化的影响。结果表明,铜渣载镍催化剂有相对低的比表面积,但它表现出极好的抗积炭性能和裂解焦油的能力。镍载量为2.0%的催化剂经过600℃焙烧后,氢气产量为26.91mmol/g,碳转化率达到了94.86%,积炭仅为0.16%;当催化温度从850℃升高到900℃时,氢气产量只增加了0.28mmol/g,综合考虑能源消耗、催化性能以及设备损耗等因素,最佳的催化温度为850℃。由此可见,铜渣在镍催化剂上的应用可实现废物回收利用,有着重要的实用价值。  相似文献   

13.
前期研究发现高弥勒指数晶面载氧体Fe2O3[104]具有高的化学链燃烧反应特性,且Co对煤及其热解中间产物具有催化气化和催化转化作用。通过正交实验优化制备Co-Fe2O3[104]/Al2O3载氧体体系结构,开展Co-Fe2O3[104]/Al2O3与褐煤的化学链燃烧,揭示载氧体与褐煤发生化学链燃烧的特性。结果表明:形貌控制制备的高弥勒指数晶面铁基载氧体Co-Fe2O3[104]/Al2O3(质量分数10%)促进了褐煤化学链燃烧过程中氧的迁移速率以及载氧体的还原程度,进而显著提高了载氧体与褐煤化学链燃烧的反应速率及反应效率。进一步通过CO多循环化学链燃烧反应、XRD和TEM表征了Co-Fe2O3[104]/Al2O3(10%)的可再生性及反应稳定性。  相似文献   

14.
The use of ilmenite as an oxygen carrier in chemical-looping combustion   总被引:2,自引:0,他引:2  
The feasibility of using ilmenite as oxygen carrier in chemical-looping combustion has been investigated. It was found that ilmenite is an attractive and inexpensive oxygen carrier for chemical-looping combustion. A laboratory fluidized-bed reactor system, simulating chemical-looping combustion by exposing the sample to alternating reducing and oxidizing conditions, was used to investigate the reactivity. During the reducing phase, 15 g of ilmenite with a particle size of 125–180 μm was exposed to a flow of 450 mLn/min of either methane or syngas (50% CO, 50% H2) and during the oxidizing phase to a flow of 1000 mLn/min of 5% O2 in nitrogen. The ilmenite particles showed no decrease in reactivity in the laboratory experiments after 37 cycles of oxidation and reduction. Equilibrium calculations indicate that the reduced ilmenite is in the form FeTiO3 and the oxidized carrier is in the form Fe2TiO5 + TiO2. The theoretical oxygen transfer capacity between these oxidation states is 5%. The same oxygen transfer capacity was obtained in the laboratory experiments with syngas. Equilibrium calculations indicate that ilmenite should be able to give high conversion of the gases with the equilibrium ratios CO/(CO2 + CO) and H2/(H2O + H2) of 0.0006 and 0.0004, respectively. Laboratory experiments suggest a similar ratio for CO. The equilibrium calculations give a reaction enthalpy of the overall oxidation that is 11% higher than for the oxidation of methane per kmol of oxygen. Thus, the reduction from Fe2TiO5 + TiO2 to FeTiO3 with methane is endothermic, but less endothermic compared to NiO/Ni and Fe2O3/Fe3O4, and almost similar to Mn3O4/MnO.  相似文献   

15.
This study investigates the kinetic modelling of oxygen carrier reduction by methane in the combustion reactor of the chemical‐looping combustion process. The species being reduced and the stability of the fluidizable oxygen carrier sample over repeated reduction–oxidation cycles are established using the temperature programmed reduction and oxidation and the pulse chemisorption characterization methods. The power‐law relation, the nucleation and nuclei growth model and the shrinking‐core models are considered to interpret the experimental kinetics of the oxygen carrier reduction. The obtained results show that the nucleation and nuclei growth model best describes the experimental data providing parameters with adequate statistical fitting indicators.  相似文献   

16.
John S. Dennis  Stuart A. Scott 《Fuel》2010,89(7):1623-224
Chemical looping combustion (CLC) has the inherent property of separating CO2 from flue gases. This paper is concerned with the application of chemical looping to the combustion of a solid fossil fuel (a lignite and its char) in a technique whereby the fuel is gasified in situ using CO2 in the presence of a batch of supported copper oxide (the “oxygen carrier”) in a single reactor. As the metal oxide becomes depleted, the feed of fuel is discontinued, the inventory of fuel is reduced by further gasification and then the contents are re-oxidised by the admission of air to the reactor, to begin the cycle again. The choice of oxides is restricted because it requires an oxide which is exothermic during reduction to balance the endothermic gasification reactions. Copper has such oxides, but a key question is whether or not it can withstand temperatures at which gasification rates are significant (∼1173 K), particularly from the point of view of avoiding sintering and deactivation of the carrier in its reduced form. It was found that an impregnated carrier, made by impregnating a θ-alumina catalyst support (BET area 157 m2/g) with a saturated solution of copper and aluminium nitrates, acted as a durable carrier over 20 cycles of reduction and oxidation, using both Hambach lignite coal, and its char, and with air as the oxidising agent. During the course of the experiments, the BET surface area of the support fell from ∼60 m2/g, just after preparation, to around 6 m2/g after 20 cycles. However, this fall did not appear to affect the overall capacity of the oxygen carrier to react with fuels and its effect on the kinetics of the reaction with CO did not influence the outcome of the experiments, since the overall performance of the looping scheme is dominated by the much slower kinetics of the gasification reaction. The apparent kinetics of the gasification are faster in the presence of the looping agent: this is because the bulk concentration of CO in the presence of the looping agent is lower, and partly because the destruction of CO in the vicinity of a gasifying particle enhances the rate of removal of CO by mass transfer (and increases the local concentration of CO2). There was little evidence to suggest a direct reaction between carbonaceous and carrier solids, other than via a gaseous intermediate. However, the observation of finite rates of conversion in a bed of active carrier, fluidised by nitrogen, is a scientific curiosity, which we have not been able to explain satisfactorily. At 1173 K, as used here, rates of gasification of Hambach lignite, and its char, are significant. The CuO in the carrier decomposes at 1173 K to produce gas-phase O2 and Cu2O: both can react with CO produced by gasification, whilst the O2 can react directly with the char.  相似文献   

17.
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier (OC).Hence,high tem-perature tolerance and rapid oxygen release rate of CuO modified by three different ores were investi-gated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model (SCM) fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling (CLOU) technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance.  相似文献   

18.
The simultaneous CO_2 capture and heat storage performances of the modified carbide slag with by-product of biodiesel were investigated in the process coupled calcium looping and CaO/Ca(OH)_2 thermochemical heat storage using air as the heat transfer fluid. The modified carbide slag with by-product of biodiesel exhibits superior CO_2 capture and heat storage capacities in the coupled calcium looping and heat storage cycles. The hydration conversion and heat storage density of the modified carbide slag after 30 heat storage cycles are 0.65 mol·mol~(-1) and 1.14 GJ·t~(-1), respectively, which are 1.6 times as high as those of calcined carbide slag. The negative effect of CO_2 in air as the heat storage fluid on the heat storage capacity of the modified carbide slag is overcome by introducing CO_2 capture cycles. In addition, the CO_2 capture reactivity of the modified carbide slag after the multiple calcium looping cycles is enhanced by the introduction of heat storage cycles. By introducing 10 heat storage cycles after the 10 th and 15 th CO_2 capture cycles, the CO_2 capture capacities of the modified carbide slag are subsequently improved by 32%and 43%, respectively. The porous and loose structure of modified carbide slag reduces the diffusion resistances of CO_2 and steam in the material in the coupled process. The formed CaCO_3 in the modified carbide slag as a result of air as the heat transfer fluid in heat storage cycles decomposes to regenerate CaO in calcium looping cycles, which improves heat storage capacity. Therefore, the modified carbide slag with by-product of biodiesel seems promising in the coupled calcium looping and CaO/Ca(OH)_2 heat storage cycles.  相似文献   

19.
A modeling tool for the investigation of chemical looping combustion (CLC) in a dual circulating fluidized bed (DCFB) reactor system is introduced. CLC is a novel combustion process with inherent CO2 separation, consisting of two fluidized bed reactors, an air reactor (AR) and a fuel reactor (FR). A solid oxygen carrier (OC) that circulates between the reactors, transports the necessary oxygen for the combustion. In the DCFB concept both AR and FR are designed as circulating fluidized beds (CFBs). Each CFB is modeled using a very simple structure in which the reacting gas is only in contact with a defined fraction of the well mixed solids. The solids distribution along the height axis is defined by a void fraction profile. Different parameters that characterize the gas-solids contact are merged into only one parameter: the fraction of solids exposed to the gas passing in plug flow (φs,core). Using this model, the performance of the 120 kW DCFB chemical looping combustor at Vienna University of Technology is investigated. This pilot rig is designed for a Ni-based OC and natural gas as fuel. The influence of the reactor temperatures, solids circulation rate, air/fuel ratio and fuel power are determined. Furthermore, it is shown that with the applied kinetics data, the OC is only fully oxidized in the AR when the AR solids inventory is much larger than the FR solids inventory or when both reactors are very large. To compare different reactor systems, the effect of the solids distribution between AR and FR is studied and both gas and solids conversions are reported.  相似文献   

20.
A facile synthesis of novel five 2D (planar) surface modifiers having a triphenylbenzene derivatives as a 2D structure has been achieved by the highly selective photocyclic aromatization reaction. Efficient enhancement of oxygen permselectivities through the three polymer membranes has been achieved by adding a small amount (<5.0 wt%) of the 2D surface modifiers. Among the five 2D surface modifiers, a modifier compound having oligoethylene oxide groups showed the best performance for the enhancement. These improvements were thought to be caused mainly by improvement of the solution selectivity on the membrane surface where the 2D surface modifiers were accumulated. In some of the surface-modified blend membranes, their plots in the PO2PO2-α graph were over or close to the upper boundary line by Robeson in 1991. Since all the membranes containing the 2D surface modifiers showed better permselectivities than the corresponding substrate membranes, it is very promising for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号