首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
结合深度学习和支持向量机的海马子区图像分割   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 由于海马子区体积很小且结构复杂,传统的分割方法无法达到理想的分割效果,为此提出一种基于卷积神经网络和支持向量机的海马子区分割方法。方法 该方法构建一种新模型,将卷积神经网络和支持向量机结合起来,使用支持向量机分类器替换卷积神经网络的输出层,通过训练深层网络自动提取图像块特征,利用所提取的图像特征训练支持向量机实现图像的像素级分类。结果 实验选取美国旧金山CIND中心的32位实验者的脑部磁共振图像(MRI)进行海马子区分割测试,在定性和定量方面分别对比了本文方法与支持向量机(SVM)、卷积神经网络(CNN)和基于稀疏表示与字典学习方法的分割结果。所提方法对海马子区CA1、CA2、DG、CA3、Head、Tail、SUB、ERC和PHG的分割准确率分别为0.969、0.733、0.967、0.837、0.981、0.920、0.972、0.968和0.976。本文方法优于现有的基于稀疏表示与字典学习、支持向量机和卷积神经网络的方法,各海马子区分割准确率均有较大提升,对较大子区如Head,准确率较现有最优方法提升10.2%,对较小子区如CA2、CA3,准确率分别有36.2%和52.7%的大幅提升。结论 本文方法有效提升了海马子区的分割准确率,可用于大脑核磁共振图像中海马及其子区的准确分割,为诸多神经退行性疾病的临床诊断与治疗提供依据。  相似文献   

2.
目的 点态卷积网络用于点云分类分割任务时,由于点态卷积算子可直接处理点云数据,逐点提取局部特征向量,解决了结构化点云带来的维度剧增和信息丢失等问题。但是为了保持点云数据结构的一致性,点态卷积算子及卷积网络模型本身并不具有描述点云全局特征的结构,因此,对点态卷积网络模型进行扩展,扩展后的模型具有的全局特征是保证分类分割准确性的重要依据。方法 构造中心点放射模型来描述点云逐点相对于全局的几何约束关系,将其引入到点态卷积网络的特征拼接环节扩展特征向量,从而为点态卷积网络构建完善的局部—全局特征描述,用于点云数据的分类分割任务。首先,将点云视为由中心点以一定方向和距离放射到物体表面的点的集合,由中心点指向点云各点的放射矢量,其矢量大小确定了各点所存在的曲面和对于中心点的紧密程度,矢量方向描述了各点对于中心点的包围方向及存在的射线。进而由点云中的坐标信息得到点云的中心点,逐点计算放射矢量构造中心点放射模型,用以描述点云的全局特征。然后,利用点云数据的坐标信息来检索点的属性,确定卷积中参与特定点卷积运算的邻域,点态卷积算子遍历点云各点,输出逐点局部特征,进一步经多层点态卷积操作得到不同深度上的局部特征描述。最后,将中心点放射模型的全局特征和点态卷积的局部特征拼接,完成特征扩展,得到点态卷积网络的扩展模型。拼接后的局部—全局特征输入全连接层用于类标签预测,输入点态卷积层用于逐点标签预测。结果 在ModelNet40和S3DIS(Stanford large-scale 3D indoor spaces dataset)数据集上分别进行实验,验证模型的分类分割性能。在ModelNet40的分类实验中,与点态卷积网络相比,扩展后的网络模型在整体分类精度和类属分类精度上分别提高1.8%和3.5%,在S3DIS数据集的分割实验中,扩展后的点态卷积网络模型整体分割精度和,类属分割精度分别提高0.7%和2.2%。结论 引入的中心点放射模型可以有效获取点云数据的全局特征,扩展后的点态卷积网络模型实现了更优的分类和分割效果。  相似文献   

3.
目的 卷积神经网络(convolutional neural network,CNN)在计算机辅助诊断(computer-aided diagnosis,CAD)肺部疾病方面具有广泛的应用,其主要工作在于肺部实质的分割、肺结节检测以及病变分析,而肺实质的精确分割是肺结节检出和肺部疾病诊断的关键。因此,为了更好地适应计算机辅助诊断系统要求,提出一种融合注意力机制和密集空洞卷积的具有编码—解码模式的卷积神经网络,进行肺部分割。方法 将注意力机制引入网络的解码部分,通过增大关键信息权重以突出目标区域抑制背景像素干扰。为了获取更广更深的语义信息,将密集空洞卷积模块部署在网络中间,该模块集合了Inception、残差结构以及多尺度空洞卷积的优点,在不引起梯度爆炸和梯度消失的情况下,获得了更深层次的特征信息。针对分割网络常见的特征丢失等问题,对网络中的上/下采样模块进行改进,利用多个不同尺度的卷积核级联加宽网络,有效避免了特征丢失。结果 在LUNA (lung nodule analysis)数据集上与现有5种主流分割网络进行比较实验和消融实验,结果表明,本文模型得到的预测图更接近于标签图像。Dice相似系数、交并比(intersection over union,IoU)、准确度(accuracy,ACC)以及敏感度(sensitivity,SE)等评价指标均优于对比方法,相比于性能第2的模型,分别提高了0.443%,0.272%,0.512%以及0.374%。结论 本文提出了一种融合注意力机制与密集空洞卷积的肺部分割网络,相对于其他分割网络取得了更好的分割效果。  相似文献   

4.
目的 卷积神经网络方法可以提取到图像的深层次信息特征,在脑部磁共振图像(MRI)分割领域展现出优秀的性能。但大部分深度学习方法都存在参数量大,边缘分割不准确的问题。为克服上述问题,本文提出一种多通道融合可分离卷积神经网络(MFSCNN)模型分割脑图像。方法 首先,在训练集中增加待分割脑结构及其边缘像素点的权重,强制使网络学习如何分割脑结构边缘部分,从而提升整体脑结构分割的准确率。其次,引入残差单元,以避免梯度弥散,同时使用深度可分离卷积代替原始的卷积层,在不改变网络每个阶段特征通道数的情况下,减少了网络训练的参数数量和训练时间,降低了训练成本。最后,将不同阶段的特征信息合并在一起,进行通道混洗,得到同时包含深浅层次信息的增强信息特征,加入到网络中进行训练,每个阶段的输入特征信息更丰富,学习特征的速度和收敛速度更快,显著地提升了网络的分割性能。结果 在IBSR(internet brain segmentation repositor)数据集上的分割结果表明,MFSCNN的分割性能相对于普通卷积神经网络(CNN)方法要明显提高,且在边缘复杂的部分,分割效果更理想,Dice和IOU(intersection over union)值分别提升了0.9% 6.6%,1.3% 9.7%。在边缘平滑的部分,MFSCNN方法比引入残差块的神经网络模型(ResCNN)和引入局部全连接模块的神经网络模型(DenseCNN)分割效果要好,而且MFSCNN的参数量仅为ResCNN的50%,DenseCNN的28%,在提升分割性能的同时,也降低了运算复杂度,缩短了训练时间。同时,在IBSR、Hammer67n20、LPBA40这3个数据集上,MFSCNN的分割性能比现有的其他主流方法更出色。结论 本文提出的MFSCNN方法,加强了网络特征的信息量,提升了网络模型的训练速度,在不同数据集上均获得更精确的MR脑部图像分割结果。  相似文献   

5.
目的 针对基于区域的语义分割方法在进行语义分割时容易缺失细节信息,造成图像语义分割结果粗糙、准确度低的问题,提出结合上下文特征与卷积神经网络(CNN)多层特征融合的语义分割方法。方法 首先,采用选择搜索方法从图像中生成不同尺度的候选区域,得到区域特征掩膜;其次,采用卷积神经网络提取每个区域的特征,并行融合高层特征与低层特征。由于不同层提取的特征图大小不同,采用RefineNet模型将不同分辨率的特征图进行融合;最后将区域特征掩膜和融合后的特征图输入到自由形式感兴趣区域池化层,经过softmax分类层得到图像的像素级分类标签。结果 采用上下文特征与CNN多层特征融合作为算法的基本框架,得到了较好的性能,实验内容主要包括CNN多层特征融合、结合背景信息和融合特征以及dropout值对实验结果的影响分析,在Siftflow数据集上进行测试,像素准确率达到82.3%,平均准确率达到63.1%。与当前基于区域的端到端语义分割模型相比,像素准确率提高了10.6%,平均准确率提高了0.6%。结论 本文算法结合了区域的前景信息和上下文信息,充分利用了区域的语境信息,采用弃权原则降低网络的参数量,避免过拟合,同时利用RefineNet网络模型对CNN多层特征进行融合,有效地将图像的多层细节信息用于分割,增强了模型对于区域中小目标物体的判别能力,对于有遮挡和复杂背景的图像表现出较好的分割效果。  相似文献   

6.
目的 放射治疗是鼻咽癌的主要治疗方式之一,精准的肿瘤靶区分割是提升肿瘤放疗控制率和减小放疗毒性的关键因素,但常用的手工勾画时间长且勾画者之间存在差异。本文探究Deeplabv3+卷积神经网络模型用于鼻咽癌原发肿瘤放疗靶区(primary tumor gross target volume,GTVp)自动分割的可行性。方法 利用Deeplabv3+网络搭建端到端的自动分割框架,以150例已进行调强放射治疗的鼻咽癌患者CT(computed tomography)影像和GTVp轮廓为研究对象,随机选取其中15例作为测试集。以戴斯相似系数(Dice similarity coefficient,DSC)、杰卡德系数(Jaccard index,JI)、平均表面距离(average surface distance,ASD)和豪斯多夫距离(Hausdorff distance,HD)为评估标准,详细比较Deeplabv3+网络模型、U-Net网络模型的自动分割结果与临床医生手工勾画的差异。结果 研究发现测试集患者的平均DSC值为0.76±0.11,平均JI值为0.63±0.13,平均ASD值为(3.4±2.0)mm,平均HD值为(10.9±8.6)mm。相比U-Net模型,Deeplabv3+网络模型的平均DSC值和JI值分别提升了3%~4%,平均ASD值减小了0.4 mm,HD值无统计学差异。结论 研究表明,Deeplabv3+网络模型相比U-Net模型采用了新型编码—解码网络和带孔空间金字塔网络结构,提升了分割精度,有望提高GTVp的勾画效率和一致性,但在临床实践中需仔细审核自动分割结果。  相似文献   

7.
目的 多部位病灶具有大小各异和类型多样的特点,对其准确检测和分割具有一定的难度。为此,本文设计了一种2.5D深度卷积神经网络模型,实现对多种病灶类型的计算机断层扫描(computed tomography,CT)图像的病灶检测与分割。方法 利用密集卷积网络和双向特征金字塔网络组成的骨干网络提取图像中的多尺度和多维度信息,输入为带有标注的中央切片和提供空间信息的相邻切片共同组合而成的CT切片组。将融合空间信息的特征图送入区域建议网络并生成候选区域样本,再由多阈值级联网络组成的Cascade R-CNN(region convolutional neural networks)筛选高质量样本送入检测与分割分支进行训练。结果 本文模型在DeepLesion数据集上进行验证。结果表明,在测试集上的平均检测精度为83.15%,分割预测结果与真实标签的端点平均距离误差为1.27 mm,直径平均误差为1.69 mm,分割性能优于MULAN(multitask universal lesion analysis network for joint lesion detection,tagging and segmentation)和Auto RECIST(response evaluation criteria in solid tumors),且推断每幅图像平均时间花费仅91.7 ms。结论 对于多种部位的CT图像,本文模型取得良好的检测与分割性能,并且预测时间花费较少,适用病变类别与DeepLesion数据集类似的CT图像实现病灶检测与分割。本文模型在一定程度上能满足医疗人员利用计算机分析多部位CT图像的需求。  相似文献   

8.
目的 脊椎CT(computed tomography)图像存在组织结构显示不佳、对比度差以及噪音干扰等问题;传统分割算法分割精度低,分割过程需人工干预,往往只能实现半自动分割,不能满足实时分割需求。基于卷积神经网络(convolutional neural network,CNN)的U-Net模型成为医学图像分割标准,但仍存在长距离交互受限的问题。Transformer集成全局自注意力机制,可捕获长距离的特征依赖,在计算机视觉领域表现出巨大优势。本文提出一种CNN与Transformer混合分割模型TransAGUNet (Transformer attention gate U-Net),以实现对脊椎CT图像的高效自动化分割。方法 提出的模型将Transformer、注意力门控机制(attention gate,AG)及U-Net相结合构成编码—解码结构。编码器使用Transformer和CNN混合架构,提取局部及全局特征;解码器使用CNN架构,在跳跃连接部分融入AG,将下采样特征图对应的注意力图(attention map)与下一层上采样后获得的特征图进行拼接,融合低层与高层特征从而实现更精细的分割。实验使用Dice Loss与带权重的交叉熵之和作为损失函数,以解决正负样本分布不均的问题。结果 将提出的算法在VerSe2020数据集上进行测试,Dice系数较主流的CNN分割模型U-Net、Attention U-Net、U-Net++和U-Net3+分别提升了4.47%、2.09%、2.44%和2.23%,相较优秀的Transformer与CNN混合分割模型TransUNet和TransNorm分别提升了2.25%和1.08%。结论 本文算法较以上6种分割模型在脊椎CT图像的分割性能最优,有效地提升了脊椎CT图像的分割精度,分割实时性较好。  相似文献   

9.
目的 肿瘤周围高危器官的准确分割是图像引导放射治疗中的关键步骤,也是对抗肺癌和食道癌,规划有效治疗策略的重要组成部分。为了解决不同患者之间器官形状和位置的复杂变化情况以及计算机断层扫描(computed tomography,CT)图像中相邻器官之间软组织对比度低等问题,本文提出了一种深度学习算法对胸部CT图像中的高危器官进行细分。方法 以U-Net神经网络结构为基础,将冠状面下的3个连续切片序列即2.5D (2.5 dimention)数据作为网络输入来获取切片联系,同时利用高效全局上下文实现不降维的跨通道交互、捕获单视图下切片序列间的长距离依赖关系、加强通道联系和融合空间全局上下文信息。在编码部分使用金字塔卷积和密集连接的集成提取多尺度信息,扩大卷积层的感受野,并将解码器与编码器每层进行连接来充分利用多尺度特征,增强特征图的辨识度。考虑到CT图像中多器官形状不规则且紧密相连问题,加入深度监督来学习不同层的特征表示,从而精准定位器官和细化器官边界。结果 在ISBI (International Symposium on Biomedical Imaging)2019 SegTHOR (segmentation of thoracic organs at risk in CT images)挑战赛中,对40个胸部多器官训练样本进行分割,以Dice系数和HD (Hausdorff distance)距离作为主要评判标准,该方法在测试样本中食道、心脏、气管和主动脉的Dice系数分别达到0.855 1、0.945 7、0.923 0和0.938 3,HD距离分别为0.302 3、0.180 5、0.212 2和0.191 8。结论 融合全局上下文和多尺度特征的算法在胸部多器官分割效果上更具竞争力,有助于临床医师实现高效的诊断与治疗。  相似文献   

10.
目的 可穿戴设备能够长时间实时监测人体心脏状况,其在心电信号监测领域应用广泛。但目前仍没有公开的来自可穿戴设备的心电数据集,大部分心电信号分析算法都是针对医院设备所采集的心电数据。因此,本文使用IREALCARE 2.0柔性远程心电贴作为心电信号监测和采集设备制作了可穿戴设备的心电数据集。针对可穿戴心电数据干扰多、数据量大等特点,本文提出了一种针对可穿戴设备获得的心电信号进行自动分类的深层卷积神经网络,称之为时空卷积神经网络(time-spatial convolutional neural networks,TSCNN)。方法 将原始的长时间心电信号分割为单个的心搏并与滤波后不同频段的心搏数据组合成十通道的数据输入到TSCNN中。TSCNN对每个心搏使用时间卷积和空间滤波来提取丰富的特征。采用小卷积核级联卷积的方式提高分类性能,并降低网络的参数量和计算量。结果 在本文制作的心电数据集上进行了测试,并与其他4种心电分类算法:CNN(convolutional neural networks)、RNN(recurrent neural networks)、1-DCNN(1-dimensional convolution neural networks)和DCN(dense convolutional networks)进行了比较。实验结果显示,本文方法的分类准确率达到91.16%,优于其他4种方法。结论 本文方法面向可穿戴心电数据,获得了较好的分类性能,可以有效监控穿戴者是否出现了心电异常情况。  相似文献   

11.
CT 图像头颈分割面临着以下难点:CT 图像的低对比度导致边界不清,图像扫描间距过大导 致冠状面和矢状面图像分辨率低,头颈中待分割的 22 个器官对于神经网络构建建模的需求不同,且由于存在极小器官造成了类间不平衡。为解决上述问题,该文提出一种 U-Net 组合模型——由 3 种 U-Net 模型组成,分别是 2D U-Net 模型、3D U-Net 模型及 3D-small U-Net 模型。其中,2D U-Net 模型用于厚层图像的分割,3D U-Net 模型利用三维空间信息,3D-small U-Net 模型用于分割最小的两个器官以解决类不平衡问题。该方法在 MICCAI 2019 StructSeg 头颈放疗危及器官分割任务中取得了第 2 名的成绩,平均 DSC 系数为 80.66%,95% 豪斯道夫距离为 2.96 mm。  相似文献   

12.
王平  高琛  朱莉  赵俊  张晶  孔维铭 《计算机应用》2019,39(11):3274-3279
为了解决人工勾画缺血性脑卒中病灶费时费力且易引入主观差异的问题,提出了一种基于三维(3D)深度残差网络与级联U-Net的自动分割算法。首先,为了有效利用图像的3D上下文信息并改善类不平衡现象,将脑卒中核磁共振图像(MRI)采样成图像块作为网络输入;然后,利用基于3D深度残差网络与级联U-Net的分割模型对图像块进行特征提取,获得粗分割结果;最后,对粗分割结果进行精分割处理。在ISLES数据集上的实验结果表明,该算法的Dice系数可达到0.81,精确度可达到0.81,灵敏度可达到0.81,平均对称表面距离(ASSD)距离系数为1.32,HD为22.67。所提算法与3D U-Net算法、基于水平集算法、基于模糊C均值(FCM)算法和基于卷积神经网络(CNN)算法相比分割性能更好。  相似文献   

13.
目的 脑肿瘤核磁共振(magnetic resonance,MR)图像分割对评估病情和治疗患者具有重要意义。虽然深度卷积网络在医学图像分割中取得了良好表现,但由于脑胶质瘤的恶性程度与外观表现有巨大差异,脑肿瘤MR图像分割仍是一项巨大挑战。图像语义分割的精度取决于图像特征的提取和处理效果。传统的U-Net网络以一种低效的拼接方式集成高层次特征和低层次特征,从而导致图像有效信息丢失,此外还存在未能充分利用上下文信息和空间信息的问题。对此,本文提出一种基于注意力机制和多视角融合U-Net算法,实现脑肿瘤MR图像的分割。方法 在U-Net的解码和编码模块之间用多尺度特征融合模块代替传统的卷积层,进行多尺度特征映射的提取与融合;在解码模块的级联结构中添加注意力机制,增加有效信息的权重,避免信息冗余;通过融合多个视角训练的模型引入3维图像的空间信息。结果 提出的模型在BraTS18(Multimodal Brain Tumor Segmentation Challenge 2018)提供的脑肿瘤MR图像数据集上进行验证,在肿瘤整体区域、肿瘤核心区域和肿瘤增强区域的Dice score分别为0.907、0.838和0.819,与其他方法进行对比,较次优方法分别提升了0.9%、1.3%和0.6%。结论 本文方法改进了传统U-Net网络提取和利用图像语义特征不足的问题,并引入了3维MR图像的空间信息,使得肿瘤分割结果更加准确,具有良好的研究和应用价值。  相似文献   

14.
目的 青光眼会对人的视力造成不可逆的损伤,从眼底图像中精确地分割视盘和视杯是青光眼诊治中的一项重要工作,为有效提升视盘和视杯的分割精度,本文提出了融合上下文和注意力的视盘视杯分割方法(context attention U-Net,CA-Net)。方法 进行极坐标转换,在极坐标系下进行分割可以平衡数据分布。使用修改的预训练ResNet作为特征提取网络,增强特征提取能力。采用上下文聚合模块(context aggregation module,CAM)多层次聚合图像上下文信息,使用注意力指导模块(attention guidance module,AGM)对融合后的特征图进行特征重标定,增强有用特征;使用深度监督思想同时对浅层网络权重进行训练,同时在视杯分割网络中引入了先验知识,约束对视杯的分割。结果 在3个数据集上与其他方法进行对比实验,在Drishti-GS1数据集中,分割视盘的Dice (dice coefficient)和IOU (intersection-over-union)分别为0.981 4和0.963 5,分割视杯的Dice和IOU分别为0.926 6和0.863 3;在RIM-ONE (retinal image database for optic nerve evaluation)-v3数据集中,分割视盘的Dice和IOU分别为0.976 8和0.954 6,分割视杯的Dice和IOU分别为0.864 2和0.760 9;在Refuge数据集中,分割视盘的Dice和IOU分别为0.975 8和0.952 7,分割视杯的Dice和IOU分别为0.887 1和0.797 2,均优于对比算法。同时,消融实验验证了各模块的有效性,跨数据集实验进一步表明了CA-Net的泛化性,可视化图像也表明CA-Net能够分割出更接近标注的分割结果。结论 在Drishti-GS1、RIM-ONE-v3和Refuge三个数据集的测试结果表明,CA-Net均能取得最优的视盘和视杯分割结果,跨数据集测试结果也更加表明了CA-Net具有良好的泛化性能。  相似文献   

15.
目的 手术器械分割是外科手术机器人精准操作的关键环节之一,然而,受复杂因素的影响,精准的手术器械分割目前仍然面临着一定的挑战,如低对比度手术器械、复杂的手术环境、镜面反射以及手术器械的尺度和形状变化等,造成分割结果存在模糊边界和细节错分的问题,影响手术器械分割的精度。针对以上挑战,提出了一种新的手术器械分割网络,实现内窥镜图像中手术器械的准确分割。方法 为了实现内窥镜图像的准确表征以获取有效的特征图,提出了基于卷积神经网络(convolutional neural network,CNN)和Transformer融合的双编码器结构,实现分割网络对细节特征和全局上下文语义信息的提取。为了实现局部特征图的特征增强,引入空洞卷积,设计了多尺度注意融合模块,以获取多尺度注意力特征图。针对手术器械分割面临的类不均衡问题,引入全局注意力模块,提高分割网络对手术器械区域的关注度,并减少对于无关特征的关注。结果 为了有效验证本文模型的性能,使用两个公共手术器械分割数据集进行性能分析和测试。基于定性分析和定量分析通过消融实验和对比实验,验证了本文算法的有效性和优越性。实验结果表明:在Kvasir-instrument数据集上,本文算法的Dice分数和mIOU (mean intersection over union)值分别为96.46%和94.12%;在Endovis2017 (2017 Endoscopic Vision Challenge)数据集上,本文算法的Dice分数和mIOU值分别为96.27%和92.55%。相较于对比的先进分割网络,本文算法实现了分割精度的有效提升。同时,消融研究也证明了本文算法方案设计的合理性,缺失任何一个子模块都会造成不同程度的精度损失。结论 本文所提出的分割模型有效地融合了CNN和Transformer的优点,同时实现了细节特征和全局上下文信息的充分提取,可以实现手术器械准确、稳定分割。  相似文献   

16.
卷积神经网络(CNN)作为医学图像分割领域中U-Net基线网络的重要组成部分,其主要作用是处理局部特征信息之间的关系.而Transformer是一种能够有效强化特征信息之间的远距离依赖关系的视觉模型.目前的研究表明,结合Transformer和CNN可以在一定程度上提高医学图像分割的准确性.但是,由于医学图像的标注数据较少,而且训练Transformer模型需要大量数据,这使得Transformer模型面临耗时长和参数量大的挑战.基于这些考虑,本文在UNeXt模型的基础上,结合多尺度混合MLP和CNN,提出了一种新型的基于混合MLP的医学图像分割模型——LM-UNet.这种模型能够有效地增强局部与全局信息之间的联系,并加强特征信息间的融合.在多个数据集上的实验表明, LM-UNet模型在皮肤数据集上的分割性能明显提升,平均Dice系数达到92.58%,平均IoU系数达到86.52%,分别比UNeXt模型提高了3%和3.5%.在软骨和乳腺数据集上的分割效果也有显著提升,平均Dice系数分别比UNeXt提高了2.5%和1.0%.因此, LM-UNet模型不仅提高了医学图像分割的准确性,还增...  相似文献   

17.
目的 评估肿瘤的恶性程度是临床诊断中的一项具有挑战性的任务。因脑肿瘤的磁共振成像呈现出不同的形状和大小,肿瘤的边缘模糊不清,导致肿瘤分割具有挑战性。为有效辅助临床医生进行肿瘤评估和诊断,提高脑肿瘤分割精度,提出一种自适应模态融合双编码器分割网络D3D-Net(double3DNet)。方法 本文提出的网络使用多个编码器和特定的特征融合的策略,采用双层编码器用于充分提取不同模态组合的图像特征,并在编码部分利用特定的融合策略将来自上下两个子编码器的特征信息充分融合,去除冗余特征。此外,在编码解码部分使用扩张多纤维模块在不增加计算开销的前提下捕获多尺度的图像特征,并引入注意力门控以保留细节信息。结果 采用BraTS2018(brain tumor segmentation 2018)、BraTS2019和BraTS2020数据集对D3D-Net网络进行训练和测试,并进行了消融实验。在BraTS2018数据集上,本模型在增强肿瘤、整个肿瘤、肿瘤核心的平均Dice值与3D U-Net相比分别提高了3.6%,1.0%,11.5%,与DMF-Net(dilatedmulti-fibernetwork...  相似文献   

18.
目的 去除颅骨是脑部磁共振图像处理和分析中的重要环节。由于脑部组织结构复杂以及采集设备噪声的影响导致现有方法不能准确分割出脑部区域,为此提出一种深度迭代融合的卷积神经网络模型实现颅骨的准确去除。方法 本文DIFNet(deep iteration fusion net)模型的主体结构由编码器和解码器组成,中间的跳跃连接方式由多个上采样迭代融合构成。其中编码器由残差卷积组成,以便浅层语义信息更容易流入深层网络,避免出现梯度消失的现象。解码器网络由双路上采样模块构成,通过具有不同感受野的反卷积操作,将输出的特征图相加后作为模块输出,有效还原更多细节上的特征。引入带有L2正则的Dice损失函数训练网络模型,同时采用内部数据增强方法,有效提高模型的鲁棒性和泛化能力。结果 为了验证本文模型的分割性能,分别利用两组数据集与传统分割算法和主流的深度学习分割模型进行对比。在训练数据集同源的NFBS(neurofeedback skull-stripped)测试数据集上,本文方法获得了最高的平均Dice值和灵敏度,分别为99.12%和99.22%。将在NFBS数据集上训练好的模型直接应用于LPBA40(loni probabilistic brain atlas 40)数据集,本文模型的Dice值可达98.16%。结论 本文提出的DIFNet模型可以快速、准确地去除颅骨,相比于主流的颅骨分割模型,精度有较高提升,并且模型具有较好的鲁棒性和泛化能力。  相似文献   

19.
肝脏肿瘤的评估是结直肠癌肝转移临床诊疗的重要步骤。为了完成腹部CT影像中的肝脏肿瘤自动分割和检测任务,提出一种改进的级联深度学习网络。级联网络采用U-Net和Mask R-CNN模型分别完成分割和检测任务。训练U-Net模型作为级联网络的第一层来分割肝脏器官作为感兴趣区域(ROI);针对ROI区域进行形态学活动轮廓提取;使用U-Net模型和Mask R-CNN模型作为级联网络的第二层分别完成精准分割和检测ROI内肝脏肿瘤的任务。实验结果表明,对于级联U-Net模型的肝脏转移瘤分割平均Dice系数为74%;Mask R-CNN的肿瘤实例分割Dice系数为67%(置信度为95%),均值平均精度(mAP)为88%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号