首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用气相色谱建立了芳烃快速分析法,该方法分析速度快、精确度高,适用于催化重整生成油的芳烃组成分析,可以替代传统的PONA方法进行C6A~C10A+芳烃组成分析,成功应用于催化剂评价在线快速分析研究。  相似文献   

2.
油品的烃族组成是评价油品质量的参数之一。有关用气相色谱法测定汽油烃族组成已有文献报道,近年来国外已发展为专用分析装置。为配合合成汽油开发研究,我们在通用型国产色谱仪上,建立了分析汽油中芳、烯、正构及异构烃的流程。即采用对芳烃分离有较高选择性的固定相,首先分离芳烃,以化学吸收剂吸收烯、芳烃,用5A分  相似文献   

3.
车用汽油烯烃含量高将带来严重环保问题.FCC装置在正常使用重油提升管时,可设计汽油提升管,用来回炼粗汽油,在降烯烃催化剂作用下,汽油中的C5~C8烯烃可进一步裂化为小分子烯烃,成为液化气组分;另外烯烃参与氢转移反应,得氢饱和为烷烃;同时烯烃环化可生成芳烃,最终使改质汽油的烯烃体积含量降至35%以下.由于芳烃辛烷值较高,从而使汽油保持稳定的高辛烷值.在有效解决芳烃缩合生焦的问题后,该工艺对汽油降烯烃效果理想.  相似文献   

4.
本文用PE-600型气相色谱仪选择快速,慢速两种进样方式测定汽油单体烃组成,通过计算油品中的碳数族组成(PONA值)。并根据PONA值分布数据可以得出在分流毛细管进样条件下,由于进样方式的不同会引起明显的碳数分布不同的现象。通过数据分析最终确定选择快速进样可以消除分流歧视。  相似文献   

5.
利用毛细管PONA色谱柱分离、GC2010PONA分析软件定性、定量测定了4个车用乙醇汽油调和组分油芳烃含量,分离出111~128个峰,定性出90~100个峰.定性组分含量占总含量的92.18%~95.26%,芳烃组分定性准确,芳烃含量数据可靠,为探讨车用乙醇汽油调和组分油调和方案提供依据.验证了PONA分析法在调和汽油分析中的应用,拓宽了PONA分析技术的应用范围.  相似文献   

6.
文章分析了C9馏分组成及其提高附加值的利用途径,工业探讨了C9馏分作为汽油组分的可行性。C9馏分含有不饱和芳烃54.2%、饱和芳烃22.49%,将其与石脑油、催化汽油混合加氢后得到了一种高辛烷值汽油,掺入3.03%的C9馏分后汽油辛烷值可以提高1.8个单位,指出了C9馏分加氢是C9资源利用的一个有效途径。  相似文献   

7.
抽余油是重整产品油抽提芳烃后剩余的馏分油,其组成成分中,除芳烃含量较低外,其它组分与一般的汽油是相近的,组成比较复杂。为了测定抽余油中C6至C8芳烃的含量,开发了一种用毛细管色谱分析抽余油中低碳芳烃(C6~C8芳烃)的方法:利用安捷伦公司(Aglient)的PONA非极性高效毛细管色谱柱,在Aglient 6820气相色谱上,使用多段程序升温,对抽余油进行直接完全的组分分离。采用"纯物质示踪法"对抽余油中的苯、甲苯、二甲苯及乙基苯进行定性分析;用萃取芳烃后的抽余油与纯芳烃物质合成制备了标样,解决了定量分析无处购置标样的问题。实验结果表明:用本方法分析抽余油中的C6~C8芳烃的最低检出浓度为30×10-6;用自制标样采用外标定量分析的相对偏差≤8.5%,分析结果的重现性良好。  相似文献   

8.
在分析催化裂化汽油馏分单体烃辛烷值特点的基础上,确定了理想的汽油高辛烷值组分,并系统考察了反应深度对大庆蜡油催化裂化反应所得汽油辛烷值和高辛烷值组分含量影响的差异,同时研究了汽油烯烃催化转化生成高辛烷值组分的可行性。结果表明,不同重油催化裂化反应深度下,汽油的烃组成和辛烷值的差异较大,不同烃族对辛烷值的贡献不同。适宜反应条件下,富含C_5~C_7烯烃的汽油和大分子烯烃均可转化为高辛烷值组分。  相似文献   

9.
<正>中国科学院大连化学物理研究所2017年5月3日发布消息称,该所碳资源小分子与氢能利用创新特区研究组孙剑、葛庆杰研究员团队通过设计一种新型Na-Fe_3O_4/HZSM-5多功能复合催化剂,成功实现了CO_2直接加氢制取高辛烷值汽油。在接近工业化生产的条件下,该催化剂实现了CH_4和CO的低选择性,烃类产物中汽油馏分烃(C_(5~11))的选择性达到78%。汽油馏分主要为高辛烷值的异构烷烃和芳烃,基本满足国V标准对苯、芳烃和烯烃的组成要求。该催化剂还具有较好  相似文献   

10.
应用煤直接液化加氢和催化重整技术,生产出混合芳烃和稳定轻烃,利用煤基甲醇制烯烃技术,生产出C5+和甲基叔丁基醚,根据调和汽油各组分的物理特性,结合各半成品市场产品价格,采用不同的配比试验方案,满足GB/T17930-2013《车用汽油》、DB11/238-2012《车用汽油(京V)》、DB31/427-2013《车用汽油(沪Ⅴ)》等车用汽油(V)需求同时,也使煤基汽油利润最大化。  相似文献   

11.
由于煤液化油石脑油馏分(200℃)中芳烃潜含量较高,利用煤液化油石脑油馏分为原料,进行加氢精制,将原料中的硫氮含量降至1 mg/kg左右,满足重整进料要求,然后在小型固定床连续反应器上进行加氢重整生产芳烃试验。着重考察重整反应前、后族组成的变化及主要芳烃化合物的产率。结果表明,加氢重整过程中发生正构烷烃异构化反应;环烷烃主要发生脱氢芳构化反应转化为芳香烃;煤液化油石脑油馏分适宜进行催化重整,C_1~C_4烃气产率6.03%,氢气产率3.60%;重整后,芳烃含量达83.20%,其中C_6~C_8芳烃含量61.03%,是提取BTX的良好原料。石脑油的馏程对芳烃的组成和产率有一定影响,适宜的馏程为60~160℃。  相似文献   

12.
采用工业铂铼双金属重整催化剂Pt-Re/γ-Al2O3开展了煤基石脑油半再生固定床催化重整单因素实验,并采用响应面法对工艺参数进行了优化与分析,最后对优化工艺条件下实验产物进行了分析。结果表明:加权平均入口温度(WAIT)、压力(P)、液时空速(LHSV)等操作条件对煤基石脑油芳烃型半再生重整产品质量、芳烃收率和C5+液体收率有很大的影响。煤基石脑油重整合适工艺参数区间:WAIT(500~520℃)、P(1.2~1.6MPa)和LHSV(2.0~3.0h-1);最佳工艺条件:WAIT为516℃,P为1.4MPa,LHSV为2.3h-1。优化工艺条件下芳烃收率达到了79.81%,响应面实验操作条件区间内,WAITPLHSV对芳烃收率影响大小顺序为:P > LHSV > WAIT。相比于石油基石脑油重整,煤基石脑油重整不仅纯氢产率和氢气纯度更高,还可获得更高的苯-甲苯-二甲苯(BTX)产率,其中苯收率:甲苯收率:二甲苯收率近似为1:3:2。  相似文献   

13.
The catalytic conversion of a methane and ethylene mixture to gasoline range hydrocarbons has been studied over W/HZSM-5 catalyst. The effect of process variables, such as temperature, percentage of volume of ethylene in the methane stream and catalyst loading on the distribution of hydrocarbons was studied. The reaction was conducted in a fixed-bed quartz-micro reactor in the temperature range of 300–500 °C using percentage of volume of ethylene in methane stream between 25 and 75% and catalyst loading of 0.2–0.4 g. The catalyst showed good catalytic performance yielding hydrocarbons consisting of gaseous products along with gasoline range liquid products. The mixed feed stream can be converted to higher hydrocarbons containing a high-liquid gasoline product selectivity (>42%). Non-aromatics C5–C10 hydrocarbons selectivity in the range of 12–53% was observed at the operating conditions studied. Design of experiment was employed to determine the optimum conditions for maximum liquid hydrocarbon products. The distribution of the gasoline range hydrocarbons (C5–C10 non-aromatics and aromatics hydrocarbons) was also determined for the optimum conditions.  相似文献   

14.
以加氢精制柴油为原料,在模拟移动床反应器中考察MgY芳烃吸附剂的分离性能。长周期运行830 d后,产品芳烃组分芳烃质量分数从98.6%降至84.7%,产品非芳组分芳烃质量分数从1.3%升至7.8%,分离性能下降明显,说明吸附剂出现失活现象。通过紫外漫反射仪(UV-Vis)、化学吸附仪(NH3-TPD)和热重分析仪(TGA)对失活吸附剂做了表征,并利用质量分数为40%的氢氟酸溶液分解失活剂骨架,添加四氯化碳超声萃取失活物质,通过X射线衍射仪(XRD)和气质联用仪(GC-MS)分析失活物质类型。失活物质主要是C10~C16带侧链单环、双环或三环芳烃,随着反应的进行芳烃不断累积,导致吸附剂极性位被覆盖进而失活,但不存在明显积炭现象。450 ℃再生后吸附剂的非芳烃/芳烃分离度与新鲜剂基本相同,吸附-脱附过程趋于平衡。  相似文献   

15.
陈治平  徐建  石冈  范煜  鲍晓军 《化工学报》2014,65(7):2751-2760
采用工业Ni-Mo/Al2O3-HZSM-5催化剂在小型固定床加氢微反装置上对催化裂化(FCC)汽油临氢改质过程的反应特性进行了研究,通过考察反应温度、压力、空速和氢油体积比对改质后的FCC汽油烃类组成的影响,分析了汽油中不同烃类的转化性能。结果表明,氢油比对产物组成影响不大,高温、低压、低空速有利于增加芳烃的选择性,低温、高压、高空速则有利于增加异构烷烃的选择性;临氢改质后,FCC汽油的烯烃含量明显降低,芳烃和异构烷烃含量增加,因而产品汽油的辛烷值基本保持不变;全馏分、轻馏分和重馏分FCC汽油临氢改质实验结果表明,烯烃含量较高的轻馏分具有更高的转化活性;在FCC汽油临氢改质过程中,同碳数的端烯烃反应活性高于内烯烃,直链烯烃的反应活性高于支链烯烃。  相似文献   

16.
This work examines the effect of various hydrocarbons on fuel processor light-off and reforming. Major hydrocarbon fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared with the fuel processing performance of blended fuel components and reformulated gasoline to examine synergistic or detrimental effects the fuel components have in a real fuel blend.

Short chained aliphatic hydrocarbons tend to have favorable light-off and reforming characteristics for catalytic autothermal reforming compared with longer-chained and aromatic components. Oxygenated hydrocarbons have lower light-off requirements than do pure hydrocarbons. Gas phase oxidation favors higher cetane # fuels, which tend to be longer chained hydrocarbons. Energy consumption during the start-up process shows a large fuel effect. Methanol and dimethylether (DME) show lower start-up energy demands for the fuel processor start-up than do high temperature reforming hydrocarbon fuels such as methane, gasoline and ethanol. Aromatics and longer chained hydrocarbons show a higher tendency for carbon formation, increasing the amount of carbon formed during the light-off phase while the addition of oxygenates tends to lower the carbon formed during the start-up process.  相似文献   


17.
含油污泥中石油烃组分复杂,仅靠产物的宏观分析结果难以揭示热解过程组分之间的相互作用。以正十二烷、1-十二烯、甲基环己烷、对二甲苯和1-甲基萘五种化合物分别代表含油污泥中石油烃的链烷烃、链烯烃、环烷烃、单环芳烃和多环芳烃五种组分,构建含油污泥石油烃的模型化合物。采用基于反应力场的分子动力学模拟方法,研究了热解过程中的产物分布及各组分之间的相互作用。结果表明,模型化合物热解产物以H2和C1~3的小分子化合物为主,热解前期主要为C2H4、C3H6,热解后期主要为C2H2、C3H4和H2。相对于模型化合物中各组分单独热解,混合热解过程中石油烃各组分的消耗速率明显加快,且热解产物的片段数也有一定程度的增加。根据一级反应动力学模型,石油烃各组分在混合热解过程中的表观活化能有不同程度降低,其中链烷烃、链烯烃和环烷烃的表观活化能分别降低了16.493 kJ/mol、50.571 kJ/mol和146.289 kJ/mol,这从分子模拟层面证明了含油污泥石油烃各组分之间热解的协同作用。  相似文献   

18.
Hydro-thermal cracking of heavy oils and its model compound   总被引:2,自引:0,他引:2  
Liquid-phase cracking of vacuum gas oil (VGO) was performed over NiMo supported nonacidic catalysts under 713 K and 8.0 MPa of hydrogen in a batch reactor, which is termed hydro-thermal cracking. Compared with VGO thermal cracking under the same reaction conditions the new process showed the suppressed naphtha yield (from 22.4 to 13.5 wt.%) and VGO conversion (from 65.7 to 64.0 wt.%) and increased the middle distillate yield (from 44.3 to 49.3 wt.%). At the same conversion level, the yield ratio of middle distillates to naphtha for this new process was two times higher than that for VGO hydrocracking. The VGO hydrocracking over USY-supported NiMo proceeded at much lower temperatures but gave higher naphtha yields. Both the thermal cracking and the hydro-thermal cracking of n-dodecyl benzene (C6H5(CH2)11CH3) yielded toluene as the major aromatic product, whereas its hydrocracking over NiMo/USY yielded benzene as the major aromatic product. The reaction mechanism of this new process was assumed to consist of thermal cracking of hydrocarbon molecules via the free radical chain mechanism and the catalytic hydroquenching of free radicals.  相似文献   

19.
引入一种新的铁前体草酸亚铁,并考察4种制备方法(并流共沉淀,正加共沉淀,沉淀-浸渍K,沉淀-浸渍K、SiO2)对费托合成铁基催化剂晶体结构、物化性质以及催化性能的影响。研究发现,制备方法显著影响催化剂的晶体结构和织构性质,由并流共沉淀制备的催化剂由于具有较好的结晶度和还原性,并且助剂与活性相结合程度更为均匀,使得催化剂展现出最佳的活性和稳定性,CO转化率可达96.2%。还发现并流共沉淀制备的催化剂表现出较高的烃类产物收率和C2~C4烯烃选择性,对液相产物和固相产物进行碳数分析发现,并流共沉淀所得的液相产物中汽油组分的含量高达85.8%,且C4+重质烃产物中,C4~C18含量高达91.0%;正加共沉淀的液相产物中煤油组分的选择性较高;沉淀-浸渍K的液相产物中柴油组分含量较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号