首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了实现海洋牧场典型物种(海参)的自动识别,利用多尺度retinex算法对其进行处理.在此算法的基础上,针对水下图像的成像特点,提出改进型多尺度retinex的计算方法.对亮度分量做多尺度增强处理,求出原图各彩色通道与亮度分量的比值;根据比值重新确定各彩色通道的灰度值;为了改善对比度,对每个通道进行分段线性拉伸;经过对...  相似文献   

2.
水体对于不同波长的光信号衰减程度不一致,这种现象破坏了水下图像的清晰度和色彩恒定性。为了解决水下图像亮度与色彩扭曲问题,提出一种基于同态滤波的水下图像增强与色彩校正模型。首先,通过比尔-朗伯定律和路径辐射分量构建出水下成像模型。其次,通过同态滤波对未经过衰减的水下图像进行估计。最后,通过麦克劳林级数对水下成像模型进行级数展开,进而推导出一种保持颜色恒定的水下图像色彩校正模型。实验部分分别对比了水下图像的主观视觉效果和客观评价指标,验证了该算法能够有效地保证水下图像的清晰度和色彩恒定性。校正后的水下图像细节丰富,色彩逼真。  相似文献   

3.
4.
《微型机与应用》2017,(14):46-48
光在水中传播时会受到水体的吸收和散射作用,从而导致水下图像整体模糊、颜色失真。针对这些问题,提出一种基于新成像模型的水下图像增强算法,该模型是针对光照不均问题通过对典型的水下成像模型进行改进得出的。另外通过分通道处理,解决了暗原色先验不适用于水下图像的问题。最后在去除后向散射噪声的同时对图像颜色进行校正。实验对比结果表明,该方法能较为有效地解决后向散射噪声和颜色失真问题并适用于光照不均的情况。  相似文献   

5.
水下机器人可用于水产养殖动态监测和水下拍摄,然而摄像机在水下抓拍的海洋图像呈现蓝绿色调、对比度低、细节模糊、亮度暗等问题,严重影响水下目标识别与检测的准确率。为此,本文提出了一种基于图像融合的低照度水下图像增强方法。首先,利用灰度世界算法对图像颜色进行校正,有效去除水下图像的蓝(绿)色基调;然后,对颜色校正后的图像分别进行锐化处理和HSV颜色空间下的亮度增强,分别得到细节增强图像和亮度增强图像;最后,将细节增强图像和亮度增强图像进行多尺度融合,得到最后的增强图像。实验结果表明,该算法不仅有效地解决了水下图像呈现蓝绿色的问题,而且增强了图像的整体亮度,使得细节更加清晰,提高了水下机器人的视觉感知能力。  相似文献   

6.
针对水下退化图像细节模糊、对比度低和蓝绿色偏问题,提出了一种基于多尺度特征融合生成对抗网络的水下图像增强算法。算法以生成对抗网络为基本框架,结合传统白平衡算法和多尺度增强网络实现对水下退化图像的增强。通过改进的通道补偿白平衡算法矫正蓝绿色偏,并以卷积神经网络提取偏色校正后图像的特征;提取图像多尺度特征,结合提出的残差密集块将每一层的局部特征增强为捕获语义信息的全局特征,并与偏色校正图像的特征相融合;通过重建模块将融合特征重建为清晰图像,恢复图像的细节信息。实验结果表明,该算法增强的水下图像去雾效果较好且颜色更真实,有效改善了水下图像色偏和模糊的问题,在主观指标和客观指标上的实验结果均优于对比算法。  相似文献   

7.
针对水下光衰减和散射导致的图像严重降质问题和用传统方法进行水下图像增强 产生色偏现象,提出一种新的水下图像增强方法。基于暗原色先验原理进行水下图像增强,用 软抠图的方法对图像暗通道进行细化;在图像前0.1%最亮的像素点中,用中值滤波算法计算出 这些像素点的中值,再计算这些像素点和与之对应的中值的差值,差值最小的像素点作为背景 光的预估值,并用该像素点所在区域颜色饱和度方差来判断预估背景光的准确性;利用Retinex 算法和图像各颜色通道的衰减系数比对增强后的图像进行颜色校正。实验表明,该方法能有效 地去除水下图像中的雾色、校正图像色偏问题,进而提高图像对比度。  相似文献   

8.
针对Retinex算法应用于水下图像增强中,常出现颜色失真与图像细节增强相矛盾的现象,提出了结合细节信息的自适应多尺度Retinex水下图像增强算法。分析包含不同细节信息的水下图像对Retinex算法增强中卷积函数尺度大小的选择要求;采用图像梯度作为调节因子,自适应调整多尺度Retinex算子的权重,用于适应包含不同细节信息的水下图像对对比度增强的要求,有效地缓和了水下图像增强在颜色失真和细节对比度提升之间的矛盾。多组实验验证了该算法在去除水下图像的蓝绿背景、避免颜色失真、消除非均匀光照和图像细节增强等方面均优于传统多尺度和颜色保真的多尺度Retinex算法。  相似文献   

9.
针对水下图像模糊、对比度低且色彩失真的问题,结合修正的水下成像模型,提出一种基于场景深度估计的自然光照水下图像增强方法.首先,依据自然光照条件下水下图像场景亮度与场景深度总体成正比的先验理论,对图像的亮度信息进行最小值滤波和软抠图处理以实现场景深度估计;然后,结合暗通道先验知识和场景深度信息进行离散像素点的后向散射分量估计,根据修正的水下成像模型来拟合和去除后向散射;最后,采用基于色适应的颜色校正方法对直接分量进行色偏校正,利用线性拉伸方法来提升图像的亮度和对比度.水下多场景条件下的实验结果表明,本文方法可有效地去除后向散射引起的雾样模糊,提高图像对比度并校正颜色偏差.  相似文献   

10.
李莉  王新强  银珊 《计算机工程》2022,48(6):222-227
水下物理环境复杂多变,导致获取的水下图像颜色失真、对比度低且细节模糊,影响了水下场景探测的准确性。结合衰减补偿和直方图拉伸技术,提出水下图像增强算法ACHS。根据不同颜色通道的衰减特性,设计基于衰减补偿的颜色校正方法解决水下图像颜色失真问题。将需要颜色校正的水下图像从RGB颜色模型转换到LAB颜色模型,使用引导滤波将亮度通道L分解为基础层和细节层,同时提出基于K-means聚类的双直方图增强算法用于增强基础层的对比度,通过Gamma校正突显细节层的纹理结构。在此基础上,累加亮度通道L的基础层和细节层,并将其从LAB颜色模型转换到RGB颜色模型以获取最终的增强图像。实验结果表明,与GDCP、REBE、WaterNet等算法相比,经该算法增强的水下图像可视度较高,并且具有自然的颜色和清晰的细节。  相似文献   

11.
Underwater images often exhibit severe color deviations and degraded visibility, which limits many practical applications in ocean engineering. Although extensive research has been conducted into underwater image enhancement, little of which demonstrates the significant robustness and generalization for diverse real-world underwater scenes. In this paper, we propose an adaptive color correction algorithm based on the maximum likelihood estimation of Gaussian parameters, which effectively removes color casts of a variety of underwater images. A novel algorithm using weighted combination of gradient maps in HSV color space and absolute difference of intensity for accurate background light estimation is proposed, which circumvents the influence of white or bright regions that challenges existing physical model-based methods. To enhance contrast of resultant images, a piece-wise affine transform is applied to the transmission map estimated via background light differential. Finally, with the estimated background light and transmission map, the scene radiance is recovered by addressing an inverse problem of image formation model. Extensive experiments reveal that our results are characterized by natural appearance and genuine color, and our method achieves competitive performance with the state-of-the-art methods in terms of objective evaluation metrics, which further validates the better robustness and higher generalization ability of our enhancement model.  相似文献   

12.
改进的多尺度Retinex图像增强算法   总被引:3,自引:0,他引:3  
针对多尺度Retinex算法在图像增强的过程中,存在着算法运算量大的问题,提出了一种基于快速二维卷积和多尺度连续估计的算法。该算法充分利用二维图像高斯卷积的可分离性和多尺度照射光连续估计的可行性,降低了Retinex算法的复杂度。同时对于增强后图像色彩容易失真的现象,提出了一种去极值的直方图裁剪法,用于保持图像色彩信息和提高对比度。实验结果表明,这些改进可以有效提高算法运行速度和改善图像增强效果。  相似文献   

13.
模糊多尺度Retinex彩色图像增强   总被引:1,自引:0,他引:1  
由于中心环绕Retinex算法中假设场景中光照是平缓变化的,所以在图像明暗对比强烈处易出现光晕现象。针对Retinex传统算法的固有缺陷,结合MSRCR算法在色彩恢复上的优势,提出了一种模糊多尺度Retinex彩色图像增强方法(FMSRCR)。FMSRCR使中心环绕空间对比运算仅在光照强度相近的区域中进行,克服了光照不均的影响。同时采用自适应高斯模,减少了卷积运算量。通过实验证明该方法是有效的。  相似文献   

14.
获得清晰准确的水下图像是人类探索水下世界的重要前置条件。然而与平常图像相比,水下图像往往具有对比度低、细节保留不足及颜色失真等问题,这导致其视觉效果不佳。针对上述问题,提出了基于人工欠曝光融合和白平衡技术(AUF+WB)的水下图像增强算法。首先,利用调节伽马值的方式对原始水下图像进行操作,从而生成5幅相应的欠曝光图像;然后,以对比度、饱和度及良好曝光度作为融合权重,并结合多尺度融合来生成融合图像;最后,将各类颜色通道补偿后的图像分别结合灰色世界假设白平衡生成相应的白平衡图像,再利用水下彩色图像质量评价指标(UCIQE)及水下图像质量评价标准(UIQM)对得到的白平衡图像进行评价。通过选取不同类型的水下图像作为实验样本,将AUF+WB算法与现存先进的水下图像去雾算法进行比较,结果表明AUF+WB算法在图像质量定性、定量两方面分析中和对比算法相比均有更好的表现。所提出的AUF+WB算法可矫正水下图像的颜色失真,并增强其对比度、恢复其细节,有效提升了水下图像的视觉质量。  相似文献   

15.
目的 为解决水下图像的色偏和低对比度等问题,提出一种基于双尺度图像分解的水下彩色图像增强算法。方法 通过基于均值和方差的对比度拉伸方法改善图像的色偏问题,并利用中值滤波降低红通道对比度拉伸后引入的噪声;采用双尺度图像分解绿通道图像补偿红通道图像细节;在处理后的红通道图像中引入原始图像红通道的真实细节与颜色。结果 选取不同水下图像作为实验数据集,将本文方法与暗通道先验的方法、基于融合的方法、自动红通道恢复方法以及一种基于卷积神经网络深度学习的方法相比较,首先从主观视觉效果进行定性分析,然后通过不同评测指标进行定量分析。主观定性分析结果表明,提出的方法相比较其他方法能够更好地解决图像色偏和红色阴影问题;定量分析中,自然图像质量评价(natural image quality evaluation,NIQE)指标和信息熵(information entropy,IE)值较基于融合的方法和深度学习的方法分别提高了1.8%和13.6%,且水下图像质量评价指标(underwater image quality measurement method,UIQM)较其他方法更优。结论 提出的双尺度图像分解方法利用水下图像成像特点解决图像色偏以及低对比度问题,具有良好的适应能力,同时算法复杂度低且鲁棒性较高,普遍适用于复杂的水下彩色图像增强。  相似文献   

16.
水中介质和微粒的影响导致光波传播衰减和散射, 在成像过程中水下图像会出现模糊和色偏等情况, 这些 水下成像退化的情况给水下的目标识别、目标跟踪、特征提取等应用带来困难. 针对以上问题, 本文提出了一种基 于通道修正均衡化的暗通道先验(CCD)水下图像增强算法: 首先是对色偏的水下图像进行通道修正均衡化, 利用直 方图强度中心做一个映射, 并将映射的三通道信息融合到限制对比度自适应直方图均衡化中, 改善了图像色偏和对 比度不足的情况; 其次是通过暗通道先验算法进行去模糊, 通过水下增强图像数据集的实验表明, CCD比现有算法 更有效地应对了水下图像成像退化问题, 取得了更好的图像质量指标; 此外, 在特征检测预处理步骤中, 本文方法能 够将检测特征点数提高约1.88倍.  相似文献   

17.
基于多尺度Retinex的自适应图像增强方法   总被引:10,自引:1,他引:9  
介绍了一种基于MSR的自适应图像增强的方法,能够较好地自动处理由于云雾、雨天等天气原因和光照不足导致的景物不清、视觉质量差和对比度低的图像,提升多种类型的图像视觉质量.通过对实验的结果以及算法的普适性进行比较和分析,证明了该方法是有效的.  相似文献   

18.
游嘉  陈波 《计算机应用》2011,31(6):1560-1562
眼底视网膜图像的血管增强在眼科诊断中具有广泛的研究价值。提出了一种基于Hessian矩阵的多尺度血管增强方法,给出了应用的方案和过程,并在DRIVE眼底图像数据库上进行实验。与其他血管增强方法相比,该方案可达到相当的准确率,且在同等准确率下具有较高的鲁棒性。  相似文献   

19.
多尺度Retinex图像增强是一种基于色彩恒定理论的图像增强算法,算法增强效果好,但随着图像分辨率的提高计算时间显著增加。分析并利用计算统一设备架构(CUDA)图形处理器(GPU)的并行处理特性,提出了一种基于CUDA的多尺度Retinex图像增强并行算法,将多尺度高斯滤波、对数空间差分和动态范围压缩等计算非常耗时的模块采用并行方式放在GPU中进行计算。实验结果表明所提算法能显著提高计算速度,随着图像分辨率的增加,最大加速比超过100倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号