首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
目的 基于深度学习的图像哈希检索是图像检索领域的热点研究问题。现有的深度哈希方法忽略了深度图像特征在深度哈希函数训练中的指导作用,并且由于采用松弛优化,不能有效处理二进制量化误差较大导致的生成次优哈希码的问题。对此,提出一种自监督的深度离散哈希方法(self-supervised deep discrete hashing,SSDDH)。方法 利用卷积神经网络提取的深度特征矩阵和图像标签矩阵,计算得到二进制哈希码并作为自监督信息指导深度哈希函数的训练。构造成对损失函数,同时保持连续哈希码之间相似性以及连续哈希码与二进制哈希码之间的相似性,并利用离散优化算法求解得到哈希码,有效降低二进制量化误差。结果 将本文方法在3个公共数据集上进行测试,并与其他哈希算法进行实验对比。在CIFAR-10、NUS-WIDE(web image dataset from National University of Singapore)和Flickr数据集上,本文方法的检索精度均为最高,本文方法的准确率比次优算法DPSH(deep pairwise-supervised hashing)分别高3%、3%和1%。结论 本文提出的基于自监督的深度离散哈希的图像检索方法能有效利用深度特征信息和图像标签信息,并指导深度哈希函数的训练,且能有效减少二进制量化误差。实验结果表明,SSDDH在平均准确率上优于其他同类算法,可以有效完成图像检索任务。  相似文献   

2.
针对采用松弛-量化策略的深度哈希方法面临的二值码离散优化的难题,提出一种端到端的基于成对标签的哈希方法来学习更具有判别力的哈希码,通过优化损失函数来解决离散优化丢失信息的问题.引入锚点哈希码概念,以汉明空间中的锚点作为监督信息训练AlexNet网络,将表示图片的二值码拟合至各锚点附近,使用优化后的损失函数计算分类误差和...  相似文献   

3.
近年来,深度有监督哈希检索方法已成功应用于众多图像检索系统中。但现有方法仍然存在一些不足:一是大部分深度哈希学习方法都采用对称策略来训练网络,但该策略训练通常比较耗时,难以用于大规模哈希学习过程;二是哈希学习过程中存在离散优化问题,现有方法将该问题进行松弛,但难以保证得到最优解。为解决上述问题,提出了一种贪心非对称深度有监督哈希图像检索方法,该方法将贪心算法和非对称策略的优势充分结合,进一步提高了哈希检索性能。在两个常用数据集上与17种先进方法进行比较。在CIFAR-10数据集上48 bit条件下,与性能最好的方法相比mAP提高1.3%;在NUS-WIDE数据集上所有bit下,mAP平均提高2.3%。在两个数据集上的实验结果表明,该方法可以进一步提高哈希检索性能。  相似文献   

4.
深度哈希在图像搜索领域取得了很好的应用,然而,先前的深度哈希方法存在语义信息未被充分利用的局限性。开发了一个基于深度监督的离散哈希算法,假设学习的二进制代码应该是分类的理想选择,成对标签信息和分类信息在一个框架内用于学习哈希码,将最后一层的输出直接限制为二进制代码。由于哈希码的离散性质,使用交替最小化方法来优化目标函数。该算法在三个图像检索数据库CIFAR-10、NUS-WIDE和SUN397中进行验证,其准确率优于其他监督哈希方法。  相似文献   

5.
现有基于深度学习的哈希图像检索方法通常使用全连接作为哈希编码层,并行输出每一位哈希编码,这种方法将哈希编码都视为图像的信息编码,忽略了编码过程中哈希码各个比特位之间的关联性与整段编码的冗余性,导致网络编码性能受限.因此,本文基于编码校验的原理,提出了串行哈希编码的深度哈希方法——串行哈希编码网络(serial hashing network, SHNet).与传统的哈希编码方法不同, SHNet将哈希编码网络层结构设计为串行方式,在生成哈希码过程中对串行生成的前部分哈希编码进行校验,从而充分利用编码的关联性与冗余性生成信息量更为丰富、更加紧凑、判别力更强的哈希码.采用mAP作为检索性能评价标准,将本文所提方法与目前主流哈希方法进行比较,实验结果表明本文在不同哈希编码长度下的m AP值在3个数据集CIFAR-10、Image Net、NUS-WIDE上都优于目前主流深度哈希算法,证明了其有效性.  相似文献   

6.
7.
为了进一步降低无监督深度哈希检索任务中的伪标签噪声,提出了一种等量约束聚类的无监督蒸馏哈希图像检索方法。该方法主要分为两个阶段,在第一阶段中,主要对无标签图像进行软伪标签标注,用于第二阶段监督哈希特征学习,通过所提等量约束聚类算法,在软伪标签标注过程中可以有效降低伪标签中的噪声;在第二阶段中,主要对学生哈希网络进行训练,用于提取图像哈希特征。通过所提出的无监督蒸馏哈希方法,利用图像软伪标签指导哈希特征学习,进一步提高了哈希检索性能,实现了高效的无监督哈希图像检索。为了评估所提方法的有效性,在CIFAR-10、FLICKR25K和EuroSAT三个公开数据集上进行了实验,并与其他先进方法进行了比较。在CIFAR-10数据集上,与TBH方法相比,所提方法检索精度平均提高12.7%;在FLICKR25K数据集上,与DistillHash相比,所提方法检索精度平均提高1.0%;在EuroSAT数据集上,与ETE-GAN相比,所提方法检索精度平均提高16.9%。在三个公开数据集上进行的实验结果表明,所提方法能够实现高性能的无监督哈希检索,且对各类数据均有较好的适应性。  相似文献   

8.
针对现有的哈希图像检索方法表达能力较弱、训练速度慢、检索精度低,难以适应大规模图像检索的问题,提出了一种基于深度残差网络的迭代量化哈希图像检索方法(DRITQH)。首先,使用深度残差网络对图像数据进行多次非线性变换,从而提取图像数据的特征,并获得具有语义特征的高维特征向量;然后,使用主成分分析(PCA)对高维图像特征进行降维,同时运用迭代量化对生成的特征向量进行二值化处理,更新旋转矩阵,将数据映射到零中心二进制超立方体,从而最小化量化误差并得到最佳的投影矩阵;最后,进行哈希学习,以得到最优的二进制哈希码在汉明空间中进行图像检索。实验结果表明,DRITQH在NUS-WIDE数据集上,对4种哈希码的检索精度分别为0.789、0.831、0.838和0.846,与改进深度哈希网络(IDHN)相比分别提升了0.5、3.8、3.7和4.2个百分点,平均编码时间小了1 717 μs。DRITQH在大规模图像检索时减少了量化误差带来的影响,提高了训练速度,实现了更高的检索性能。  相似文献   

9.
为了解决传统图像检索算法低效和耗时的缺点,提出一种基于PCA哈希的图像检索算法。具体地,首先通过结合PCA与流形学习将原始高维数据降维,然后通过最小方差旋转得到哈希函数和二值化阈值。进而将原始数据矩阵转换为哈希编码矩阵。最后通过计算样本间汉明距离得到样本相似性。在三个公开数据集上的实验结果表明本文提出的哈希算法在多个评价指标下均优于现有算法。  相似文献   

10.
杨粟  欧阳智  杜逆索 《计算机应用》2021,41(7):1902-1907
针对传统无监督哈希图像检索模型中存在图像数据之间的语义信息学习不足,以及哈希编码长度每换一次模型就需重新训练的问题,提出一种用于大规模图像数据集检索的无监督搜索框架——基于相关度距离的无监督并行哈希图像检索模型.首先,使用卷积神经网络(CNN)学习图像的高维特征连续变量;然后,使用相关度距离衡量特征变量构建伪标签矩阵,...  相似文献   

11.
目的 哈希检索旨在将海量数据空间中的高维数据映射为紧凑的二进制哈希码,并通过位运算和异或运算快速计算任意两个二进制哈希码之间的汉明距离,从而能够在保持相似性的条件下,有效实现对大数据保持相似性的检索。但是,遥感影像数据除了具有影像特征之外,还具有丰富的语义信息,传统哈希提取影像特征并生成哈希码的方法不能有效利用遥感影像包含的语义信息,从而限制了遥感影像检索的精度。针对遥感影像中的语义信息,提出了一种基于深度语义哈希的遥感影像检索方法。方法 首先在具有多语义标签的遥感影像数据训练集的基础上,利用两个不同配置参数的深度卷积网络分别提取遥感影像的影像特征和语义特征,然后利用后向传播算法针对提取的两类特征学习出深度网络中的各项参数并生成遥感影像的二进制哈希码。生成的二进制哈希码之间能够有效保持原始高维遥感影像的相似性。结果 在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集及FLICKR-25K数据集上进行实验,并与多种方法进行比较和分析。当编码位数为64时,相对于DPSH(deep supervised Hashing with pairwise labels)方法,在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集、FLICKR-25K数据集上,mAP(mean average precision)指标分别提高了约2%、6%7%、0.6%。结论 本文提出的端对端的深度学习框架,对于带有一个或多个语义标签的遥感影像,能够利用语义特征有效提高对数据集的检索性能。  相似文献   

12.
现实生活中的图像大多具有多种标签属性。对于多标签图像,理想情况下检索到的图像应该按照与查询图像相似程度降序排列,即与查询图像共享的标签数量依次递减。然而,大多数哈希算法主要针对单标签图像检索而设计的,而且现有用于多标签图像检索的深度监督哈希算法忽略了哈希码的排序性能且没有充分地利用标签类别信息。针对此问题,提出了一种具有性能感知排序的深度监督哈希方法(deep supervised hashing with performance-aware ranking,PRDH),它能够有效地感知和优化模型的性能,改善多标签图像检索的效果。在哈希学习部分,设计了一种排序优化损失函数,以改善哈希码的排序性能;同时,还加入了一种空间划分损失函数,将具有不同数量的共享标签的图像划分到相应的汉明空间中;为了充分地利用标签信息,还鲜明地提出将预测标签用于检索阶段的汉明距离计算,并设计了一种用于多标签分类的损失函数,以实现对汉明距离排序的监督与优化。在三个多标签基准数据集上进行的大量检索实验结果表明,PRDH的各项评估指标均优于现有先进的深度哈希方法。  相似文献   

13.
哈希方法由于低存储、高效率的特性而被广泛应用于遥感图像检索领域。面向遥感图像检索任务的无监督哈希方法存在伪标签不可靠、图像对的训练权重相同以及图像检索精度较低等问题,为此,提出一种基于深度多相似性哈希(DMSH)的遥感图像检索方法。针对优化伪标签和训练关注度分别构建自适应伪标签模块(APLM)和成对结构信息模块(PSIM)。APLM采用K最近邻和核相似度来评估图像间的相似关系,实现伪标签的初始生成和在线校正。PSIM将图像对的多尺度结构相似度映射为训练关注度,为其分配不同的训练权重从而优化深度哈希学习。DMSH通过Swin Transformer骨干网络提取图像的高维特征,将基于语义相似矩阵的伪标签作为监督信息以训练深度网络,同时网络在两个基于不同相似度设计的模块上实现交替优化,充分挖掘图像间的多种相似信息进而生成具有高辨识力的哈希编码,实现遥感图像的高精度检索。实验结果表明,DMSH在EuroSAT和PatternNet数据集上的平均精度均值较对比方法分别提高0.8%~3.0%和9.8%~12.5%,其可以在遥感图像检索任务中取得更高的准确率。  相似文献   

14.
目的 服装检索对于在线服装的推广和销售有着重要的作用。而目前的服装检索算法无法准确地检索出非文本描述的服装。特别是对于跨场景的多标签服装图片,服装检索算法的准确率还有待提升。本文针对跨场景多标签服装图片的差异性较大以及卷积神经网络输出特征维度过高的问题,提出了深度多标签解析和哈希的服装检索算法。方法 该方法首先在FCN(fully convolutional network)的基础上加入条件随机场,对FCN的结果进行后处理,搭建了FCN粗分割加CRFs(conditional random fields)精分割的端到端的网络结构,实现了像素级别的语义识别。其次,针对跨场景服装检索的特点,我们调整了CCP(Clothing Co-Parsing)数据集,并构建了Consumer-to-Shop数据集。针对检索过程中容易出现的语义漂移现象,使用多任务学习网络分别训练了衣物分类模型和衣物相似度模型。结果 我们首先在Consumer-to-Shop数据集上进行了服装解析的对比实验,实验结果表明在添加了CRFs作为后处理之后,服装解析的效果有了明显提升。然后与3种主流检索算法进行了对比,结果显示,本文方法在使用哈希特征的条件下,也可以取得较好的检索效果。在top-5正确率上比WTBI(where to buy it)高出1.31%,比DARN(dual attribute-aware ranking network)高出0.21%。结论 针对服装检索的跨场景效果差、检索效率低的问题,本文提出了一种基于像素级别语义分割和哈希编码的快速多目标服装检索方法。与其他检索方法相比,本文在多目标、多标签服装检索场景有一定的优势,并且在保持了一定检索效果的前提下,有效地降低了存储空间,提高了检索效率。  相似文献   

15.
目的 基于哈希编码的检索方法是图像检索领域中的经典方法。其原理是将原始空间中相似的图片经哈希函数投影、量化后,在汉明空间中得到相近的哈希码。此类方法一般包括两个过程:投影和量化。投影过程大多采用主成分分析法对原始数据进行降维,但不同方法的量化过程差异较大。对于信息量不均衡的数据,传统的图像哈希检索方法采用等长固定编码位数量化的方式,导致出现低编码效率和低量化精度等问题。为此,本文提出基于哈夫曼编码的乘积量化方法。方法 首先,利用乘积量化法对降维后的数据进行量化,以便较好地保持数据在原始空间中的分布情况。然后,采用子空间方差作为衡量信息量的标准,并以此作为编码位数分配的依据。最后,借助于哈夫曼树,给方差大的子空间分配更多的编码位数。结果 在常用公开数据集MNIST、NUS-WIDE和22K LabelMe上进行实验验证,与原始的乘积量化方法相比,所提出方法能平均降低49%的量化误差,并提高19%的平均准确率。在数据集MNIST上,与同类方法的变换编码方法(TC)进行对比,比较了从32 bit到256 bit编码时的训练时间,本文方法的训练时间能够平均缩短22.5 s。结论 本文提出了一种基于多位编码乘积量化的哈希方法,该方法提高了哈希编码的效率和量化精度,在平均准确率、召回率等性能上优于其他同类算法,可以有效地应用到图像检索相关领域。  相似文献   

16.
已有的无监督跨模态哈希(UCMH)方法主要关注构造相似矩阵和约束公共表征空间的结构,忽略了2个重要问题:一是它们为不同模态的数据提取独立的表征用以检索,没有考虑不同模态之间的信息互补;二是预提取特征的结构信息不完全适用于跨模态检索任务,可能会造成一些错误信息的迁移。针对第一个问题,提出一种多模态表征融合结构,通过对不同模态的嵌入特征进行融合,从而有效地综合来自不同模态的信息,提高哈希码的表达能力,同时引入跨模态生成机制,解决检索数据模态缺失的问题;针对第二个问题,提出一种相似矩阵动态调整策略,在训练过程中用学到的模态嵌入自适应地逐步优化相似矩阵,减轻预提取特征对原始数据集的偏见,使其更适应跨模态检索,并有效避免过拟合问题。基于常用数据集Flickr25k和NUS-WIDE进行实验,结果表明,通过该方法构建的模型在Flickr25k数据集上3种哈希位长检索的平均精度均值较DGCPN模型分别提高1.43%、1.82%和1.52%,在NUS-WIDE数据集上分别提高3.72%、3.77%和1.99%,验证了所提方法的有效性。  相似文献   

17.
在疾病诊断、手术引导及放射性治疗等图像辅助诊疗场景中,将不同时间、不同模态或不同设备的图像通过合理的空间变换进行配准是必要的处理流程之一。随着深度学习的快速发展,基于深度学习的医学图像配准研究以其耗时短、精度高的优势吸引了研究者的广泛关注。本文全面整理了2015—2019年深度医学图像配准方向的论文,系统地分析了深度医学图像配准领域的最新研究进展,展现了深度配准算法研究从迭代优化到一步预测、从有监督学习到无监督学习的总体发展趋势。具体来说,本文在界定深度医学图像配准问题和介绍配准研究分类方法的基础上,以相关算法的网络训练过程中所使用的监督信息多少作为分类标准,将深度医学图像配准划分为全监督、双监督与弱监督、无监督医学图像配准方法。全监督配准方法通过采用随机变换、传统算法和模型生成等方式获取近似的金标准作为监督信息;双监督、无监督配准方法通过引入图像相似度损失、标签相似度损失等其他监督信息以降低对金标准的依赖;无监督配准方法则完全消除对标注数据的需要,仅使用图像相似度损失和正则化损失监督网络训练。目前,无监督医学图像算法已经成为医学图像配准领域的研究重点,在无需获得代价高昂的标注信息下就能够取得与有监督和传统方法相当甚至更高的配准精度。在此基础上,本文进一步讨论了医学图像配准研究后续可能的4个未来挑战,希望能够为更高精度、更高效率的深度医学图像配准算法的研究提供方向,并推动深度医学图像配准技术在临床诊疗中落地应用。  相似文献   

18.
Due to its storage efficiency and fast query speed, cross-media hashing methods have attracted much attention for retrieving semantically similar data over heterogeneous datasets. Supervised hashing methods, which utilize the labeled information to promote the quality of hashing functions, achieve promising performance. However, the existing supervised methods generally focus on utilizing coarse semantic information between samples (e.g. similar or dissimilar), and ignore fine semantic information between samples which may degrade the quality of hashing functions. Accordingly, in this paper, we propose a supervised hashing method for cross-media retrieval which utilizes the coarse-to-fine semantic similarity to learn a sharing space. The inter-category and intra-category semantic similarity are effectively preserved in the sharing space. Then an iterative descent scheme is proposed to achieve an optimal relaxed solution, and hashing codes can be generated by quantizing the relaxed solution. At last, to further improve the discrimination of hashing codes, an orthogonal rotation matrix is learned by minimizing the quantization loss while preserving the optimality of the relaxed solution. Extensive experiments on widely used Wiki and NUS-WIDE datasets demonstrate that the proposed method outperforms the existing methods.  相似文献   

19.
眼底血管图像分割对青光眼、糖尿病视网膜病变等多种眼部疾病有较好的辅助诊断作用, 目前深度学习因其强大的抽象特征发现能力, 有望满足人们从眼底血管图像中提取特征信息进行图像自动分割的需求, 成为眼底血管图像分割领域的研究热点. 为更好把握该领域的研究进展, 本文对相关数据集和评价指标整理归纳, 对深度学习在眼底血管图像分割中的应用进行详细阐述, 重点梳理各类分割方法的基本思想、网络结构及改进之处, 分析现有眼底血管图像分割方法存在的局限性及面临的挑战, 并对该领域未来的研究方向做出展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号