首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein lipidation and lipid trafficking control many key biological functions in all kingdoms of life. The discovery of diverse lipid species and their covalent attachment to many proteins has revealed a complex and regulated network of membranes and lipidated proteins that are central to fundamental aspects of physiology and human disease. Given the complexity of lipid trafficking and the protein targeting mechanisms involved with membrane lipids, precise and sensitive methods are needed to monitor and identify these hydrophobic molecules in bacteria, yeast, and higher eukaryotes. Although many analytical methods have been developed for characterizing membrane lipids and covalently modified proteins, traditional reagents and approaches have limited sensitivity, do not faithfully report on the lipids of interest, or are not readily accessible. The invention of bioorthogonal ligation reactions, such as the Staudinger ligation and azide-alkyne cycloadditions, has provided new tools to address these limitations, and their use has begun to yield fresh insight into the biology of protein lipidation and lipid trafficking. In this Account, we discuss how these new bioorthogonal ligation reactions and lipid chemical reporters afford new opportunities for exploring the biology of lipid-modified proteins and lipid trafficking. Lipid chemical reporters from our laboratory and several other research groups have enabled improved detection and large-scale proteomic analysis of fatty-acylated and prenylated proteins. For example, fatty acid and isoprenoid chemical reporters in conjunction with bioorthogonal ligation methods have circumvented the limited sensitivity and hazards of radioactive analogues, allowing rapid and robust fluorescent detection of lipidated proteins in all organisms tested. These chemical tools have revealed alterations in protein lipidation in different cellular states and are beginning to provide unique insights in mechanisms of regulation. Notably, the purification of proteins labeled with lipid chemical reporters has allowed both the large-scale analysis of lipidated proteins as well as the discovery of new lipidated proteins involved in metabolism, gene expression, and innate immunity. Specific lipid reporters have also been developed to monitor the trafficking of soluble lipids; these species are enabling bioorthogonal imaging of membranes in cells and tissues. Future advances in bioorthogonal chemistry, specific lipid reporters, and spectroscopy should provide important new insight into the functional roles of lipidated proteins and membranes in biology.  相似文献   

2.
Understanding protein structure and function is essential for uncovering the secrets of biology, but it remains extremely challenging because of the high complexity of protein networks and their wiring. The daunting task of elucidating these interconnections requires the concerted application of methods emerging from different disciplines. Chemical biology integrates chemistry, biology, and pharmacology and has provided novel techniques and approaches to the investigation of biological processes. Among these, site-specific protein labeling with functional groups such as fluorophors, spin probes, and affinity tags has greatly facilitated both in vitro and in vivo studies of protein structure and function. Bioorthogonal chemical reactions, which enable chemo- and regioselective attachment of small-molecule probes to proteins, are particularly attractive and relevant for site-specific protein labeling. The introduction of powerful labeling techniques also has inspired the development of novel strategies for surface immobilization of proteins to create protein biochips for in vitro characterization of biochemical activities or interactions between proteins. Because this process requires the efficient immobilization of proteins on surfaces while maintaining structure and activity, tailored methods for protein immobilization based on bioorthogonal chemical reactions are in high demand. In this Account, we summarize recent developments and applications of site-specific protein labeling and surface immobilization of proteins, with a special focus on our contributions to these fields. We begin with the Staudinger ligation, which involves the formation of a stable amide bond after the reaction of a preinstalled azide with a triaryl phosphine reagent. We then examine the Diels-Alder reaction, which requires the protein of interest to be functionalized with a diene, enabling conjugation to a variety of dienophiles under physiological conditions. In the oxime ligation, an oxyamine is condensed with either an aldehyde or a ketone to form an oxime; we successfully pursued the inverse of the standard technique by attaching the oxyamine, rather than the aldehyde, to the protein. The click sulfonamide reaction, which involves the Cu(I)-catalyzed reaction of sulfonylazides with terminal alkynes, is then discussed. Finally, we consider in detail the photochemical thiol-ene reaction, in which a thiol adds to an ene group after free radical initiation. Each of these methods has been successfully developed as a bioorthogonal transformation for oriented protein immobilization on chips and for site-specific protein labeling under physiological conditions. Despite the tremendous progress in developing such transformations over the past decade, however, the demand for new bioorthogonal methods with improved kinetics and selectivities remains high.  相似文献   

3.
Genetically encoded p‐azido‐phenylalanine (azF) residues in G protein‐coupled receptors (GPCRs) can be targeted with dibenzocyclooctyne‐modified (DIBO‐modified) fluorescent probes by means of strain‐promoted [3+2] azide–alkyne cycloaddition (SpAAC). Here we show that azF residues situated on the transmembrane surfaces of detergent‐solubilized receptors exhibit up to 1000‐fold rate enhancement relative to azF residues on water‐exposed surfaces. We show that the amphipathic moment of the labeling reagent, consisting of hydrophobic DIBO coupled to hydrophilic Alexa dye, results in strong partitioning of the DIBO group into the hydrocarbon core of the detergent micelle and consequently high local reactant concentrations. The observed rate constant for the micelleenhanced SpAAC is comparable with those of the fastest bioorthogonal labeling reactions known. Targeting hydrophobic regions of membrane proteins by use of micelle‐enhanced SpAAC should expand the utility of bioorthogonal labeling strategies.  相似文献   

4.
Nucleotides, amino acids, sugars, and lipids are almost ubiquitously homochiral within individual cells on Earth. While oligonucleotides and proteins exist as one natural chirality throughout the tree of life, two stereoisomers of phospholipids have separately emerged in archaea and bacteria, an evolutionary divergence known as “the lipid divide”. Within this review, we focus on the emergence of phospholipid homochirality and compare the stability of synthetic homochiral and heterochiral membranes in vitro. We discuss chemical probes designed to study the stereospecific interactions of lipid membranes in vitro. Overall, we aim to highlight studies that help elucidate the determinants of stereospecific interactions between lipids, peptides, and small molecule ligands. Continued work in understanding the drivers of favorable interactions between chiral molecules and biological membranes will lead to the design of increasingly selective chemical tools for bioorthogonal labeling of lipid membranes and safer membrane-associating pharmaceuticals.  相似文献   

5.
Comprehensive proteomic analyses require new methodologies to accelerate the correlation of gene sequence with protein function. Key tools for such efforts include biophysical probes that integrate into the covalent architecture of proteins. Lanthanide-binding tags (LBTs) are expressible, multitasking fusion partners that are optimized to bind lanthanide ions and have several desirable attributes, which include long-lived luminescence, excellent X-ray scattering power for phase determination, and magnetic properties to facilitate NMR spectroscopic structure elucidation. Herein, we present peptide sequences with a 40-fold higher affinity for Tb(3+) ions and significantly brighter luminescence intensity compared with existing peptides. Incorporation of an LBT onto ubiquitin as a prototype fusion protein allows the use of powerful protein-visualization techniques, which include rapid luminescence detection of LBT-tagged proteins in SDS-PAGE gels, as well as determination of protein concentrations in complex mixtures. The LBT strategy is a new alternative for expressing fluorescent fusion proteins by routine molecular biological techniques.  相似文献   

6.
Proteins are the workhorses of the cell, playing crucial roles in virtually every biological process. The revolutionary ability to visualize and monitor proteins in living systems, which is largely the result of the development of green fluorescence protein (GFP) and its derivatives, has dramatically expanded our understanding of protein dynamics and function. Still, GFPs are ill suited in many circumstances; one major drawback is their relatively large size, which can significantly perturb the functions of the native proteins to which they are fused. To bridge this gap, scientists working at the chemistry-biology interface have developed methods to install bioorthogonal functional groups into proteins in living cells. The bioorthogonal group is, by definition, a non-native and nonperturbing chemical group. But more importantly, the installed bioorthogonal handle is able to react with a probe bearing a complementary functionality in a highly selective fashion and with the cell operating in its physiological state. Although extensive efforts have been directed toward the development of bioorthogonal chemical reactions, introducing chemical functionalities into proteins in living systems remains an ongoing challenge. In this Account, we survey recent progress in this area, focusing on a genetic code expansion approach. In nature, a cell uses posttranslational modifications to append the necessary functional groups into proteins that are beyond those contained in the canonical 20 amino acids. Taking lessons from nature, scientists have chosen or engineered certain enzymes to modify target proteins with chemical handles. Alternatively, one can use the cell's translational machinery to genetically encode bioorthogonal functionalities, typically in the form of unnatural amino acids (UAAs), into proteins; this can be done in a residue-specific or a site-specific manner. For studying protein dynamics and function in living cells, site-specific modification by means of genetic code expansion is usually favored. A variety of UAAs bearing bioorthogonal groups as well as other functionalities have been genetically encoded into proteins of interest. Although this approach is well established in bacteria, tagging proteins in mammalian cells is challenging. A facile pyrrolysine-based system, which might potentially become the "one-stop shop" for protein modification in both prokaryotic and eukaryotic cells, has recently emerged. This technology can effectively introduce a series of bioorthogonal handles into proteins in mammalian cells for subsequent chemical conjugation with small-molecule probes. Moreover, the method may provide more precise protein labeling than GFP tagging. These advancements build the foundation for studying more complex cellular processes, such as the dynamics of important receptors on living mammalian cell surfaces.  相似文献   

7.
Penicillin-binding proteins (PBPs) are a family of bacterial enzymes that are key components of cell-wall biosynthesis and the target of β-lactam antibiotics. Most microbial pathogens contain multiple structurally homologous PBP isoforms, making it difficult to target individual PBPs. To study the roles and regulation of specific PBP isoforms, a panel of bioorthogonal β-lactone probes was synthesized and compared. Fluorescent labeling confirmed selectivity, and PBPs were selectively enriched from Streptococcus pneumoniae lysates. Comparisons between fluorescent labeling of probes revealed that the accessibility of bioorthogonal reporter molecules to the bound probe in the native protein environment exerts a more significant effect on labeling intensity than the bioorthogonal reaction used, observations that are likely applicable beyond this class of probes or proteins. Selective, bioorthogonal activity-based probes for PBPs will facilitate the activity-based determination of the roles and regulation of specific PBP isoforms, a key gap in knowledge that has yet to be filled.  相似文献   

8.
Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional affinity labeling method and allows for real-time monitoring of protein activity. With the high target specificity and biocompatibility of this technique, we have achieved individual labeling and imaging of endogenously expressed proteins in samples of high biological complexity. We also highlight applications in which our current approach enabled the monitoring of important biological events, such as ligand binding, in living cells. These novel chemical labeling techniques are expected to provide a molecular toolbox for studying a wide variety of proteins and beyond in living cells.  相似文献   

9.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   

10.
11.
Protein myristoylation plays key roles in biological processes, for instance, in membrane attachment and activation of proteins and in mediating protein–protein and protein–lipid interactions. Furthermore, myristoylated proteins are involved in disorders, including cancer and viral infections. Therefore, new tools to study protein myristoylation are in high demand. Herein, we report the development of photoactivatable probes, based on a diazirine-substituted analogue of myristic acid. The probes bind to and, upon irradiation, covalently label the lipid-binding chaperone protein uncoordinated 119 (UNC119). UNC119 increases overall solubility and regulates specifically the transport of myristoylated proteins between intercellular membranes. The binding mode of the probes is similar to that of the myristate moiety, and the residues inside the hydrophobic pocket of UNC119 proteins that are critical for covalent binding have been identified. The interaction with UNC119 was also demonstrated in cell lysate by means of affinity enrichment. Moreover, it is shown that the myristate analogue can be incorporated into peptide substrates by N-myristoyl transferases of Leishmania and Trypanosoma protozoan parasites.  相似文献   

12.
Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.  相似文献   

13.
Disease mechanisms are increasingly being resolved at the molecular level. Biomedical success at this scale creates synthetic opportunities for combining specifically designed orthogonal reactions in applications such as imaging, diagnostics, and therapy. For practical reasons, it would be helpful if bioorthogonal coupling reactions proceeded with extremely rapid kinetics (k > 10(3) M(-1) s(-1)) and high specificity. Improving kinetics would minimize both the time and amount of labeling agent required to maintain high coupling yields. In this Account, we discuss our recent efforts to design extremely rapid bioorthogonal coupling reactions between tetrazines and strained alkenes. These selective reactions were first used to covalently couple conjugated tetrazine near-infrared-emitting fluorophores to dienophile-modifed extracellular proteins on living cancer cells. Confocal fluorescence microscopy demonstrated efficient and selective labeling, and control experiments showed minimal background fluorescence. Multistep techniques were optimized to work with nanomolar concentrations of labeling agent over a time scale of minutes: the result was successful real-time imaging of covalent modification. We subsequently discovered fluorogenic probes that increase in fluorescence intensity after the chemical reaction, leading to an improved signal-to-background ratio. Fluorogenic probes were used for intracellular imaging of dienophiles. We further developed strategies to react and image chemotherapeutics, such as trans-cyclooctene taxol analogues, inside living cells. Because the coupling partners are small molecules (<300 Da), they offer unique steric advantages in multistep amplification. We also describe recent success in using tetrazine reactions to label biomarkers on cells with magneto-fluorescent nanoparticles. Two-step protocols that use bioorthogonal chemistry can significantly amplify signals over both one-step labeling procedures as well as two-step procedures that use more sterically hindered biotin-avidin interactions. Nanoparticles can be detected with fluorescence or magnetic resonance techniques. These strategies are now being routinely used on clinical samples for biomarker profiling to predict malignancy and patient outcome. Finally, we discuss recent results with tetrazine reactions used for in vivo molecular imaging applications. Rapid tetrazine cycloadditions allow modular labeling of small molecules with the most commonly used positron emission tomography isotope, (18)F. Additionally, recent work has applied this reaction directly in vivo for the pretargeted imaging of solid tumors. Future work with tetrazine cycloadditions will undoubtedly lead to optimized protocols, improved probes, and additional biomedical applications.  相似文献   

14.
To build on the last century's tremendous strides in understanding the workings of individual proteins in the test tube, we now face the challenge of understanding how macromolecular machines, signaling pathways, and other biological networks operate in the complex environment of the living cell. The fluorescent proteins (FPs) revolutionized our ability to study protein function directly in the cell by enabling individual proteins to be selectively labeled through genetic encoding of a fluorescent tag. Although FPs continue to be invaluable tools for cell biology, they show limitations in the face of the increasingly sophisticated dynamic measurements of protein interactions now called for to unravel cellular mechanisms. Therefore, just as chemical methods for selectively labeling proteins in the test tube significantly impacted in vitro biophysics in the last century, chemical tagging technologies are now poised to provide a breakthrough to meet this century's challenge of understanding protein function in the living cell. With chemical tags, the protein of interest is attached to a polypeptide rather than an FP. The polypeptide is subsequently modified with an organic fluorophore or another probe. The FlAsH peptide tag was first reported in 1998. Since then, more refined protein tags, exemplified by the TMP- and SNAP-tag, have improved selectivity and enabled imaging of intracellular proteins with high signal-to-noise ratios. Further improvement is still required to achieve direct incorporation of powerful fluorophores, but enzyme-mediated chemical tags show promise for overcoming the difficulty of selectively labeling a short peptide tag. In this Account, we focus on the development and application of chemical tags for studying protein function within living cells. Thus, in our overview of different chemical tagging strategies and technologies, we emphasize the challenge of rendering the labeling reaction sufficiently selective and the fluorophore probe sufficiently well behaved to image intracellular proteins with high signal-to-noise ratios. We highlight recent applications in which the chemical tags have enabled sophisticated biophysical measurements that would be difficult or even impossible with FPs. Finally, we conclude by looking forward to (i) the development of high-photon-output chemical tags compatible with living cells to enable high-resolution imaging, (ii) the realization of the potential of the chemical tags to significantly reduce tag size, and (iii) the exploitation of the modular chemical tag label to go beyond fluorescent imaging.  相似文献   

15.
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.  相似文献   

16.
The combined technologies of optical microscopy and selective probes allow for real-time analysis of protein function in living cells. Synthetic chemistry offers a means to develop specific, protein-targeted probes that exhibit greater optical and chemical functionality than the widely used fluorescent proteins. Here we describe pharmacokinetically optimized, fluorescent trimethoprim (TMP) analogues that can be used to specifically label recombinant proteins fused to E. coli dihydrofolate reductase (eDHFR) in living, wild-type mammalian cells. These improved fluorescent tags exhibited high specificity and fast labeling kinetics, and they could be detected at a high signal-to-noise ratio by using fluorescence microscopy and fluorescence-activated cell sorting (FACS). We also show that fluorescent TMP-eDHFR complexes are complements to green fluorescent protein (GFP) for two-color protein labeling experiments in cells.  相似文献   

17.
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.  相似文献   

18.
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.  相似文献   

19.
Labeling proteins with high specificity and efficiency is a fundamental prerequisite for microscopic visualization of subcellular protein structures and interactions. Although the comparatively small size of epitope tags makes them less perturbative to fusion proteins, they require the use of large antibodies that often limit probe accessibility and effective resolution. Here we use the covalent SpyTag–SpyCatcher system as an epitope‐like tag for fluorescent labeling of intracellular proteins in fixed cells for both conventional and super‐resolution microscopy. We also applied this method to endogenous proteins by gene editing, demonstrating its high labeling efficiency and capability for isoform‐specific labeling.  相似文献   

20.
Rats were fed for four weeks with different lipid diets to determine the effects on the endoplasmic reticulum membranes of the liver and on the postmitochondrial supernatant fraction of the gastroduodenal mucosa. The diets contained cholesterol, cacao butter, olive oil, and these in combination. The results showed that dietary lipids were able to modify the composition of the hepatic endoplasmic reticulum and, to a lesser extent, that of postmitochondrial fraction of gastroduodenal mucosa. Cacao butter in the diet decreased the relative proportion of protein in hepatic microsomes. Cholesterol and olive oil were able to increase the cholesterol content of microsomes. The trypsin digestion of membranes revealed that cholesterol increased the solubility of microsomal protein and decreased the trypsin sensitive protein-lipid binding. The neutral fat diets increased the binding of proteins to the membrane, and cholesterol had no effect when it was given in combination. The low power photomicrographs revealed vacuolization of the cytoplasm of the hepatocytes when rats were fed on lipid rich diets. Also fatty degeneration was present. Cholesterol in combination with olive oil, however, did normalize the structure of the hepatocytes to a marked extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号