共查询到20条相似文献,搜索用时 8 毫秒
1.
增强激光诱导等离子体的发射光谱强度,对于精确测量微弱光谱信号,改进待测材料中低含量元素的探测灵敏度意义重要。首先对金属样品加热升温,并且在一定温度时利用波长为1 064 nm的Nd:YAG纳秒脉冲激光烧蚀样品,激发产生等离子体,测量了不同样品温度条件下等离子体的发射光谱强度和信噪比。结果表明,采用的激光能量为200 mJ时,随着样品温度的升高,等离子体辐射会逐渐增强,并且在温度为150 ℃时达到最大。计算表明,样品中分析元素Mo、Cr、Ni和Mn在温度为150 ℃时的光谱线强度比室温条件下的分别提高了54.56%,72.43%,70.29%和54.01%,光谱信噪比分别增大了37.44%,40.74%,38.6%和37.06%。实验还通过观察等离子体的照片,测量等离子体的温度、电子密度和样品蒸发量,讨论了激光诱导金属等离子体辐射增强的原因。可见,升高样品温度是改善激光等离子体光谱质量的一种有效手段。 相似文献
2.
为了提高土壤中激光诱导土壤等离子体光谱的质量,以纳秒脉冲激光作为激发源,研究了CsCl作为土壤样品添加剂对等离子体辐射特性的影响。实验结果表明,在激光能量为200mJ的条件下,CsCl添加剂能够明显增强等离子体的辐射强度。对于土壤样品中的元素Al、Fe和Ti,添加剂含量为20%的谱线强度比无添加剂时的分别提高了42%、39%和54%,光谱信背比分别提高了8%、24%和28%,而且元素Fe和Ti的光谱线宽度变窄了。对激光能量分别为300mJ和400mJ条件下的等离子体光谱也进行了研究。 相似文献
3.
为了研究样品温度变化对激光诱导铜等离子体特征参数的影响,利用单脉冲激光诱导激发加热台上的样品形成等离子体,
改变样品温度获得相应的黄铜等离子体发射光谱。分析了样品温度变化时特征谱线强度的变化,并在局部热
平衡(Local thermodynamic equilibrium, LTE)条件下,利用Boltzman方程和Stark展宽计算并获得不同样品温度
条件下等离子体电子温度和电子密度随时间的演化规律,同时讨论了激光诱导金属等离子体光谱增强的原因。
实验结果表明,延迟时间相同时,样品温度越高,谱线强度越强,电子温度和电子密度越大。由此可见,
适当升高样品温度可以提高谱线强度。 相似文献
4.
激光诱导等离子体光谱电火花激发样品的发射光谱特性研究可回溯到本世纪以前.在这种技术中,定域的火花激发样品,产生含有激发态原子和离子的等离子体.该技术很适于气相样品的研究,但早期的文献表明液体及固体也可通过火花发射光谱进行研究。随着高脉冲能量激光器的出... 相似文献
5.
6.
用Nd∶YAG脉冲激光烧蚀Al 靶获得Al 等离子体,利用时空分辨技术采集等离子体的时
空分辨信息。用Ar 气作保护气体,记录了100kPa 、10kPa 、1kPa 、0. 1kPa 气压下的时空分辨谱。借助Ar + 离子丰富的特征谱线,计算等离子体电子温度,从而估算Al 等离子体的温度。结果发现:10kPa 气压下,Ar + 离子辐射相对较强,谱线最清晰,最有利于电子温度的计算;气压降低时,Ar + 离子辐射减弱,但0. 1kPa 时仍采集到清晰的Ar + 离子辐射;100kPa 气压下,Ar + 离子辐射很弱,不能计算电子温度;气压对Ar + 离子辐射影响很大,但对等离子体离子辐射时期的温度影响不大,后三种气压下的估算温度大约都是20000K。 相似文献
7.
8.
为了实现玻璃表面的金属化,运用激光诱导等离子体沉积技术,选用廉价易维护且波长为1064nm的红外纳秒光纤激光和T2铜靶材,在透明材料普通硅酸盐玻璃表面直接沉积出了金属铜,并对其进行了光学显微镜和扫描电镜表征。结果表明,在一定的激光能量密度范围内(沉积阈值能量密度12.50J/cm2~激光器所能达到的最大能量密度27.13J/cm2),随着激光能量密度的增加,沉积在玻璃表面的铜颗粒数量增加;而在激光能量密度一定(27.13J/cm2)的条件下,若保持激光光斑的横向和纵向搭接率一致,当光斑搭接率不小于50%时,由于玻璃对激光的强烈吸收,导致铜沉积失败;当光斑搭接率在-20%~50%变化时,沉积在玻璃表面的铜颗粒数量呈现先增加后减小的变化趋势。激光诱导等离子体沉积技术是一种可实现透明衬底材料表面金属化的便捷技术。 相似文献
9.
本文研究了时间分辨YAG激光诱导固体表面等离子体的发射光谱。测量了在140npaAr缓冲气体中激光照射Mg块等固体表面的等离子体光谱。在激光照射后的短时间(τ_d<1μs)内,光谱 相似文献
10.
采用波长1064 nm的调Q脉冲Nd:YAG激光器和多通道小型光纤光栅光谱仪,搭建了一套激光诱导击穿光谱分析系统。选择土壤中常见元素AlⅡ(422.68 nm)作为分析线,详细研究激光能量和采样延迟对激光诱导土壤等离子体光谱特性的影响。在相同激光能量下,随着采样延迟时间增加时,信号强度、背景强度、噪声都将变小,而SNR则呈现先增大后减小的趋势;在相同采样延迟时间下,增加激光能量,信号强度、噪声也将增强,而背景强度和信噪比的变化则呈现先增加后减小的趋势。对于某一定的激光能量, 存在一个与之相对应最佳采样延迟时间,随着激光能量增加时,最佳延迟时间也会增大。综合考虑采样延迟时间和激光能量对激光诱导等离子体光谱信噪比的影响,给出了系统的最优化工作参数是激光能量120 mJ、最佳采样延迟时间1.5 μs。 相似文献
11.
12.
为了获得高质量的激光诱导等离子体发射谱,在激 光诱导等离子体附近放置平面反射镜,通过改变平 面反射镜与等离子体中心轴线之间的距离,观测反射镜对土壤等离子体辐射强度的影 响;利用 Boltzmann图法和光谱线Stark展宽法测量了等离子体的电子温度Te和电子密度Ne,并解释了辐 射增强的机理。实验结果表明,平面反射镜对等离子体辐射有一定程度的增强作用, 当平面反射镜与等离子体中心轴线 的间距为3mm时,样品元素Cr、Fe和Ca的光谱线强度比无反射镜时的分别提高了49.3、50.1和75.9%,光谱信噪比(SNR )分别提 高了56.8、47.5和65.5%,Te升高了 1250K,Ne增 加了0.62×1015 cm-3;随着 反射镜与等离子体中心轴线之间距离的增大,等离子体辐射强度逐渐减弱。 相似文献
13.
14.
针对激光等离子体减阻技术机理,采用纳秒激光,数值模拟激光等离子体在流场中的演化过程,分析关键参数对纳秒激光等离子体减阻性能的影响。结果表明:纳秒激光能最大程度地提高激光等离子体减阻性能,阻力减小的百分比达99%,低阻力维持时间是入射激光持续时间的103倍;随着来流马赫数的增大,空气来流强度增强,导致减小阻力的百分比减小;随着激光能量的增加,激光引致的冲击波强度增大,使得减小阻力的百分比增加;随着激光聚焦击穿位置的增大,减小阻力的百分比减小,但低阻力维持的时间明显增加。 相似文献
15.
16.
为了减小谱线自发辐射跃迁几率等参量的不确定性带来的计算误差,采用一种改进型的迭代Boltzmann算法研究了激光诱导水垢等离子体的电子温度,经过12次迭代,线性相关系数由0.7687提高到0.99991,得到水垢等离子体的电子温度为5012K。Lorentz函数拟合Ca Ⅱ 393.37nm得到水垢等离子体的电子密度是5.7×1016cm-3,远高于临界值6.4×1015cm-3,证明激光诱导水垢等离子体满足局部热力学平衡模型。结果表明,本方法不仅操作简单,而且可以明显提高等离子体特征参量的求解精度。 相似文献
17.
18.
针对激光诱导Cu等离子体时间演化问题,使用Nd∶YAG脉冲激光器对Cu样品进行烧蚀产生等离子体,采集延迟时间为0.5~10 μs时等离子体时间分辨光谱并对整体谱线进行分析。激光能量调节为142 mJ,在热力学平衡状态下,利用Boltzmann斜率法测得等离子体电子温度。选择独立较好、不受相邻谱线影响的Cu I 521.8 nm作为特征谱线测量其半波宽度,并采用Stark展宽法计算等离子体的电子密度。实验表明:随着延时时间的增加,等离子体内能因不断向外扩展转化为动能而骤减,电子温度整体呈下降趋势,且在延时时间为2 μs时达到最大,延时时间13 μs后下降趋缓。随着延迟时间的增加,等离子体的电子密度降低,电子与发射粒子之间的碰撞程度也相应降低,谱线展宽随之减小。 相似文献
19.
采用激光诱导击穿光谱法(LIBS)对土壤进行了研究。激光器采用的是Nd:YAG脉冲激光器,激光器的输出波长是1 064 nm,脉宽是5.82 ns,激光聚焦在土壤表面产生激光诱导等离子体,通过优化实验参数(ICCD延时、脉冲能量、ICCD门宽、脉冲频率、谱图积累次数)对Ca Ⅱ 393.37 nm和Ca Ⅱ 396.37 nm两条特征谱线强度及信背比的影响,确定实验最佳条件是ICCD延时1 s,激光能量50 mJ,ICCD门宽3.5 s,脉冲频率1 Hz,谱图积累次数100次。在最优实验条件下计算等离子体参数,得出土壤中的等离子体电子温度是11 604 K,土壤的等离子体电子密度是5.1551016 cm-3,经过计算,土壤样品满足LTE条件。这说明,以上关于土壤样品的等离子体参数计算结果是真实有效的。 相似文献
20.
水分对激光诱导煤粉等离子体特性的影响 总被引:2,自引:0,他引:2
研究了水分对激光诱导击穿煤粉等离子体特性的影响,以分析水分对激光诱导击穿煤粉定量测量的影响.实验选取了空干基C和Si元素含量相近但水分差别较大的神华煤和平朔煤,分别采用其收到基和干燥基共4个样品进行实验.采用Ca的原子谱线计算了各样品在延迟时间分别为83 ns,500 ns,917 ns和1292 ns时的激光诱导击穿等离子体温度,并分别用C247.856 nm和Si390.5523 nm特征谱线估算了电子密度.实验表明,各样品的激光等离子体温度随着延迟时间的增大而降低,含水分的煤样其激光诱导击穿等离子体的温度较低,而电子密度受水分的影响不大,含水分的煤样其激光诱导击穿的特征谱线强度较弱. 相似文献