首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Song  Yun  Yang  Gaobo  Xie  Hongtao  Zhang  Dengyong  Xingming  Sun 《Multimedia Tools and Applications》2017,76(7):10083-10096
Multimedia Tools and Applications - For compressed sensing (CS) recovery, the reconstruction quality is highly dependent on the sparsity level of the representation for the signal. Motivated by the...  相似文献   

2.
Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inefficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over state-of-the-art sparse representation based classification methods.  相似文献   

3.
针对彩色图像在去噪时易产生模糊现象和伪色彩的问题,提出多信息结合字典算法。首先提出了基于RGB颜色空间各通道模值的加权梯度定义,并在此基础上建立了由彩色图像的亮度、加权梯度、颜色信息结合的一种过完备结构字典。其次利用噪声图像的稀疏性,通过不断更新迭代的字典训练过程,找到最优稀疏系数和最优学习字典,从而将噪声信息和图像有用信息分离开,精确重构图像并单求其颜色,进而得到去噪后的彩色图像。实验结果显示,与已有算法相比,本文提出的算法在不同的噪声强度下都取得了更好的视觉效果和更高的客观评价指标值,表明该算法具有良好的去噪性能。  相似文献   

4.
针对传统稀疏表示不能有效区分目标和背景的缺点,提出一种判别稀疏表示算法,这种算法在传统稀疏表示目标函数中加入一个判别函数,大大降低干扰因素对目标跟踪的影响。基于判别稀疏表示和[?1]约束,提出一种在线字典学习算法升级目标模板,有效降低背景信息对目标模板的影响。提取目标梯度方向的直方图(HOG)特征,利用其对光照和形变等复杂环境具有较强鲁棒性的优点,实现对目标更稳定的跟踪。实验结果表明,与现有跟踪方法相比,该算法的跟踪效果更好。  相似文献   

5.
信号分解的稀疏程度决定了压缩感知重构信号的精度,针对标准正交基稀疏程度的不足,提出了基于混合字典的压缩感知图像分解和重构方法。构建匹配图像边缘和纹理的二维Gabor字典,将图像在离散余弦字典与建立的二维Gabor字典上进行混合稀疏分解,得到图像的光滑成分、边缘成分和纹理成分。对得到的稀疏成分进行CS观测,通过求解一个优化问题重构图像。实验结果表明,构造的混合字典能够对图像进行更加稀疏的表示,在相同的采样率下,图像的重构质量优于标准正交基分解。  相似文献   

6.
Multimedia Tools and Applications - Under the new video application scene of resource-constrained coding side such as wireless sensor networks, compressed sensing technique provides the possibility...  相似文献   

7.
目的 多假设预测是视频压缩感知多假设预测残差重构算法的关键技术之一,现有的视频压缩感知多假设预测算法中预测分块固定,这种方法存在两点不足:1)对于视频帧中运动形式复杂的图像块预测效果不佳;2)对于运动平缓区域,相邻图像块的运动矢量非常相近,每块单独通过运动估计寻找最佳匹配块,导致算法复杂度较大。针对这些问题,提出了分级多假设预测思路(Hi-MH),即对运动复杂程度不同的区域采取不同的块匹配预测方法。方法 对于平缓运动区域的图像块,利用邻域图像块的运动矢量预测当前块的运动矢量,从而降低运动估计的算法复杂度;对于运动较复杂的图像块,用更小的块寻找最佳匹配;对于运动特别复杂的图像块利用自回归模型对单个像素点进行预测,提高预测精度。结果 Hi-MH算法与现有的快速搜索预测算法相比,每帧预测时间至少缩短了1.4 s,与现有最优的视频压缩感知重构算法相比,对于运动较为复杂的视频序列,峰值信噪比(PSNR)提升幅度达到1 dB。结论 Hi-MH算法对于运动形式简单的视频序列或区域降低了计算复杂度,对于运动形式较为复杂的视频序列或区域提高了预测精度。  相似文献   

8.
压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 dB。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。  相似文献   

9.
基于稀疏聚集的块结构字典学习方法不能对字典原子支撑集数目差别大的情况进行辨别的问题,提出了一种利用球面K-均值学习块结构字典的方法,将字典原子支撑集差别纳入考虑范围,通过余弦距离判别将相近的字典原子聚类,形成具有非均匀块结构的字典;利用学习得到的块结构字典对信号进行重构.仿真实验表明:与离散余弦基(DCT)、无结构字典和基于稀疏聚集的块结构字典相比,改进方法学习的字典与图像信号的匹配度更好,有效地提高了图像重构质量,降低了信号的重构误差.  相似文献   

10.
目的 海马子区体积极小且结构复杂,现有多图谱的分割方法难以取得理想的分割结果,为此提出一种字典学习和稀疏表示的海马子区分割方法。方法 该方法为目标图像中的每个体素点建立稀疏表示和字典学习模型以获取该点的标记。其中,字典学习模型由图谱灰度图像中的图像块构建。提出利用图谱标记图像的局部二值模式(LBP)特征增强训练字典的判别性;然后求解目标图像块在训练字典中的稀疏表示以确定该点标记;最后依据图谱的先验知识纠正分割结果中的错误标记。结果 与现有典型的多图谱方法进行定性和定量对比,该方法优于现有典型的多图谱分割方法,对较大海马子区的平均分割准确率可达到0.890。结论 本文方法适用于在大脑核磁共振图像中精确分割海马子区,且具有较强的鲁棒性,可为神经退行性疾病的诊断提供可靠的依据。  相似文献   

11.
Recent researches have shown that the sparse representation based technology can lead to state of art super-resolution image reconstruction (SRIR) result. It relies on the idea that the low-resolution (LR) image patches can be regarded as down sampled version of high-resolution (HR) images, whose patches are assumed to have a sparser presentation with respect to a dictionary of prototype patches. In order to avoid a large training patches database and obtain more accurate recovery of HR images, in this paper we introduce the concept of examples-aided redundant dictionary learning into the single-image super-resolution reconstruction, and propose a multiple dictionaries learning scheme inspired by multitask learning. Compact redundant dictionaries are learned from samples classified by K-means clustering in order to provide each sample a more appropriate dictionary for image reconstruction. Compared with the available SRIR methods, the proposed method has the following characteristics: (1) introducing the example patches-aided dictionary learning in the sparse representation based SRIR, in order to reduce the intensive computation complexity brought by enormous dictionary, (2) using the multitask learning and prior from HR image examples to reconstruct similar HR images to obtain better reconstruction result and (3) adopting the offline dictionaries learning and online reconstruction, making a rapid reconstruction possible. Some experiments are taken on testing the proposed method on some natural images, and the results show that a small set of randomly chosen raw patches from training images and small number of atoms can produce good reconstruction result. Both the visual result and the numerical guidelines prove its superiority to some start-of-art SRIR methods.  相似文献   

12.
Every day, a huge amount of video data is generated worldwide and processing this kind of data requires powerful resources in terms of time, manpower, and hardware. Therefore, to help quickly understand the content of video data, video summarization methods have been proposed. Recently, sparse formulation-based methods have been found to be able to summarize a large amount of video compared to other methods. In this paper, we propose a new method in which video summarization is performed as training and selection sparse dictionary problem simultaneously. It is shown that the proposed method is able to improve the summarization of a large amount of video data compared to other methods. Finally, the performance of the proposed method is compared to state-of-the-art methods using standard data sets, in which the key frames are manually tagged. The obtained results demonstrate that the proposed method improves video summarization compared to other methods.  相似文献   

13.
针对传统的稀疏表示字典学习图像分类方法在大规模分布式环境下效率低下的问题,设计一种基于稀疏表示全局字典的图像学习方法。将传统的字典学习步骤分布到并行节点上,使用凸优化方法在节点上学习局部字典并实时更新全局字典,从而提高字典学习效率和大规模数据的分类效率。最后在MapReduce平台上进行并行化实验,结果显示该方法在不影响分类精度的情况下对大规模分布式数据的分类有明显的加速,可以更高效地运用于各种大规模图像分类任务中。  相似文献   

14.
针对遥感图像视觉对比度差、分辨率低及目标含有不同角度旋转的情况,在稀疏表示分类识别的基础上,提出一种基于扩展字典稀疏表示的遥感目标识别方法。首先将训练样本和待测样本进行二进小波变换增强,提取增强图像的SIFT特征构成特征字典,并将原始的训练字典改为训练-特征扩展字典进行稀疏表示,从而使字典更加具有判别能力,提高识别率。同时,分析了SIFT特征经随机投影后对识别率的影响。实验表明,该方法对遥感图像目标识别具有较好的鲁棒性。  相似文献   

15.
Distributed compressed video sensing scheme combines advantages of compressive sensing and distributed video coding to get better performance, in the meantime, adapts to the limited-resource wireless multimedia sensor network. However, in the conventional distributed compressed video sensing schemes, self-similarity and high sampling rate of the key frame have not been sufficiently utilized, and the overall computational complexity increases with the development of these schemes. To solve the aforementioned problems, we propose a novel distributed compressed video sensing scheme. A new key frame secondary reconstruction scheme is proposed, which further improves the quality of key frame and decreases computational complexity. The key frame’s initial reconstruction value is deeply exploited to assist the key frame secondary reconstruction. Then, a hypotheses set acquisition algorithm based on motion estimation is proposed to improve the quality of hypotheses set by optimizing the searching window under low complexity. Experimental results demonstrate that the overall performance of the proposed scheme outperforms that of the state-of-the-art methods.  相似文献   

16.
为了提高压缩感知中图像的稀疏表示性能, 提出了一种Contourlet域方向子带稀疏表示的图像压缩感知算法。将图像Contourlet分解后的多个高频子带根据方向正交特点进行重组, 采用随机高斯矩阵对重组后的子带分别进行测量, 实现压缩采样; 利用正交匹配追踪法重建各子带系数, 并进行Contourlet反变换重构原图像。实验结果表明, 在相同采样率下, 算法重构图像的主观视觉效果和峰值信噪比都优于小波压缩感知算法。  相似文献   

17.
目前,标准的CS重构算法仅利用信号和图像在小波变换下的稀疏先验信息,而并没有利用变换系数具有的结构化特性。为了能够快速精确地重建原始信号,将结构化稀疏模型与SP算法、CoSaMP算法相结合,提出了压缩感知重构的改进算法。另外,将基于双树复小波变换的系数结构模型融入上述算法,进一步提高重构性能。实验结果表明,所提出的算法可获得更高的图像重建质量。  相似文献   

18.

Steganography has been a great interest since long time ago. There are a lot of methods that have been widely used since long past. Recently, there has been a growing interest in the use of sparse representation in signal processing. Sparse representation can efficiently model signals in different applications to facilitate processing. Much of the previous work was focused on image and audio sparse representation for steganography. In this paper, a new steganography scheme based on video sparse representation (VSR) is proposed. To exploit proper dictionary, KSVD algorithm is applied to DCT coefficients of Y component related to video (cover) frames. Both I and Q components of video frames are used for secure message insertion. The aim is to hide secret messages into non-zero coefficients of sparse representation of DCT called, I and Q video frames. Several experiments are performed to evaluate the performance of the proposed algorithm, in case of some metrics such as pick signal to noise ratio (PSNR), the hiding ratio (HR), bit error rate (BER) and similarity (Sim) of secret message, and also runtime. The simulation results show that the proposed method exhibits appropriate invisibility and robustness.

  相似文献   

19.
Image fusion is an important technique which aims to produce a synthetic result by leveraging the cross information available in the existing data. Sparse Representation (SR) is a powerful signal processing theory used in wide variety of applications like image denoising, compression and fusion. Construction of a proper dictionary with reduced computational efficiency is a major challenge in these applications. Owing to the above criterion, we propose a supervised dictionary learning approach for the fusion algorithm. Initially, gradient information is obtained for each patch of the training data set. Then, the edge strength and information content are measured for the gradient patches. A selection rule is finally employed to select the patches with better focus features for training the over complete dictionary. By the above process, the number of input patches for dictionary training is reduced to a greater extent. At the fusion step, the globally learned dictionary is used to represent the given set of source image patches. Experimental results with various source image pairs demonstrate that the proposed fusion framework gives better visual quality and competes with the existing methodologies quantitatively.  相似文献   

20.
稀疏表示以其出色的分类性能成为说话人确认研究的热点,其中过完备字典的构建是关键,直接影响其性能。为了提高说话人确认系统的鲁棒性,同时解决稀疏表示过完备字典中存在噪声及信道干扰信息的问题,提出一种基于i-向量的主成分稀疏表示字典学习算法。该算法在高斯通用背景模型的基础上提取说话人的i-向量,并使用类内协方差归一化技术对i-向量进行信道补偿;根据信道补偿后的说话人i-向量的均值向量估计其信道偏移空间,在该空间采用主成分分析方法提取低维信道偏移主分量,用于重新计算说话人i-向量,从而达到进一步抑制i-向量中信道干扰的目的;将新的i-向量作为字典原子构建高鲁棒性稀疏表示过完备字典。在测试阶段,测试语音的i-向量在该字典上寻找其稀疏表示系数向量,根据系数向量对测试i-向量的重构误差确定目标说话人。仿真实验表明,该算法具有良好的识别性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号