共查询到20条相似文献,搜索用时 0 毫秒
1.
Multimedia Tools and Applications - For compressed sensing (CS) recovery, the reconstruction quality is highly dependent on the sparsity level of the representation for the signal. Motivated by the... 相似文献
2.
Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inefficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over state-of-the-art sparse representation based classification methods. 相似文献
3.
针对传统稀疏表示不能有效区分目标和背景的缺点,提出一种判别稀疏表示算法,这种算法在传统稀疏表示目标函数中加入一个判别函数,大大降低干扰因素对目标跟踪的影响。基于判别稀疏表示和[?1]约束,提出一种在线字典学习算法升级目标模板,有效降低背景信息对目标模板的影响。提取目标梯度方向的直方图(HOG)特征,利用其对光照和形变等复杂环境具有较强鲁棒性的优点,实现对目标更稳定的跟踪。实验结果表明,与现有跟踪方法相比,该算法的跟踪效果更好。 相似文献
4.
信号分解的稀疏程度决定了压缩感知重构信号的精度,针对标准正交基稀疏程度的不足,提出了基于混合字典的压缩感知图像分解和重构方法。构建匹配图像边缘和纹理的二维Gabor字典,将图像在离散余弦字典与建立的二维Gabor字典上进行混合稀疏分解,得到图像的光滑成分、边缘成分和纹理成分。对得到的稀疏成分进行CS观测,通过求解一个优化问题重构图像。实验结果表明,构造的混合字典能够对图像进行更加稀疏的表示,在相同的采样率下,图像的重构质量优于标准正交基分解。 相似文献
5.
Multimedia Tools and Applications - Under the new video application scene of resource-constrained coding side such as wireless sensor networks, compressed sensing technique provides the possibility... 相似文献
6.
压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 dB。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。 相似文献
7.
基于稀疏聚集的块结构字典学习方法不能对字典原子支撑集数目差别大的情况进行辨别的问题,提出了一种利用球面K-均值学习块结构字典的方法,将字典原子支撑集差别纳入考虑范围,通过余弦距离判别将相近的字典原子聚类,形成具有非均匀块结构的字典;利用学习得到的块结构字典对信号进行重构.仿真实验表明:与离散余弦基(DCT)、无结构字典和基于稀疏聚集的块结构字典相比,改进方法学习的字典与图像信号的匹配度更好,有效地提高了图像重构质量,降低了信号的重构误差. 相似文献
8.
Recent researches have shown that the sparse representation based technology can lead to state of art super-resolution image reconstruction (SRIR) result. It relies on the idea that the low-resolution (LR) image patches can be regarded as down sampled version of high-resolution (HR) images, whose patches are assumed to have a sparser presentation with respect to a dictionary of prototype patches. In order to avoid a large training patches database and obtain more accurate recovery of HR images, in this paper we introduce the concept of examples-aided redundant dictionary learning into the single-image super-resolution reconstruction, and propose a multiple dictionaries learning scheme inspired by multitask learning. Compact redundant dictionaries are learned from samples classified by K-means clustering in order to provide each sample a more appropriate dictionary for image reconstruction. Compared with the available SRIR methods, the proposed method has the following characteristics: (1) introducing the example patches-aided dictionary learning in the sparse representation based SRIR, in order to reduce the intensive computation complexity brought by enormous dictionary, (2) using the multitask learning and prior from HR image examples to reconstruct similar HR images to obtain better reconstruction result and (3) adopting the offline dictionaries learning and online reconstruction, making a rapid reconstruction possible. Some experiments are taken on testing the proposed method on some natural images, and the results show that a small set of randomly chosen raw patches from training images and small number of atoms can produce good reconstruction result. Both the visual result and the numerical guidelines prove its superiority to some start-of-art SRIR methods. 相似文献
9.
Every day, a huge amount of video data is generated worldwide and processing this kind of data requires powerful resources in terms of time, manpower, and hardware. Therefore, to help quickly understand the content of video data, video summarization methods have been proposed. Recently, sparse formulation-based methods have been found to be able to summarize a large amount of video compared to other methods. In this paper, we propose a new method in which video summarization is performed as training and selection sparse dictionary problem simultaneously. It is shown that the proposed method is able to improve the summarization of a large amount of video data compared to other methods. Finally, the performance of the proposed method is compared to state-of-the-art methods using standard data sets, in which the key frames are manually tagged. The obtained results demonstrate that the proposed method improves video summarization compared to other methods. 相似文献
10.
针对传统的稀疏表示字典学习图像分类方法在大规模分布式环境下效率低下的问题,设计一种基于稀疏表示全局字典的图像学习方法。将传统的字典学习步骤分布到并行节点上,使用凸优化方法在节点上学习局部字典并实时更新全局字典,从而提高字典学习效率和大规模数据的分类效率。最后在MapReduce平台上进行并行化实验,结果显示该方法在不影响分类精度的情况下对大规模分布式数据的分类有明显的加速,可以更高效地运用于各种大规模图像分类任务中。 相似文献
11.
为了提高压缩感知中图像的稀疏表示性能, 提出了一种Contourlet域方向子带稀疏表示的图像压缩感知算法。将图像Contourlet分解后的多个高频子带根据方向正交特点进行重组, 采用随机高斯矩阵对重组后的子带分别进行测量, 实现压缩采样; 利用正交匹配追踪法重建各子带系数, 并进行Contourlet反变换重构原图像。实验结果表明, 在相同采样率下, 算法重构图像的主观视觉效果和峰值信噪比都优于小波压缩感知算法。 相似文献
12.
目前,标准的CS重构算法仅利用信号和图像在小波变换下的稀疏先验信息,而并没有利用变换系数具有的结构化特性。为了能够快速精确地重建原始信号,将结构化稀疏模型与SP算法、CoSaMP算法相结合,提出了压缩感知重构的改进算法。另外,将基于双树复小波变换的系数结构模型融入上述算法,进一步提高重构性能。实验结果表明,所提出的算法可获得更高的图像重建质量。 相似文献
13.
Distributed compressed video sensing scheme combines advantages of compressive sensing and distributed video coding to get better performance, in the meantime, adapts to the limited-resource wireless multimedia sensor network. However, in the conventional distributed compressed video sensing schemes, self-similarity and high sampling rate of the key frame have not been sufficiently utilized, and the overall computational complexity increases with the development of these schemes. To solve the aforementioned problems, we propose a novel distributed compressed video sensing scheme. A new key frame secondary reconstruction scheme is proposed, which further improves the quality of key frame and decreases computational complexity. The key frame’s initial reconstruction value is deeply exploited to assist the key frame secondary reconstruction. Then, a hypotheses set acquisition algorithm based on motion estimation is proposed to improve the quality of hypotheses set by optimizing the searching window under low complexity. Experimental results demonstrate that the overall performance of the proposed scheme outperforms that of the state-of-the-art methods. 相似文献
14.
Steganography has been a great interest since long time ago. There are a lot of methods that have been widely used since long past. Recently, there has been a growing interest in the use of sparse representation in signal processing. Sparse representation can efficiently model signals in different applications to facilitate processing. Much of the previous work was focused on image and audio sparse representation for steganography. In this paper, a new steganography scheme based on video sparse representation (VSR) is proposed. To exploit proper dictionary, KSVD algorithm is applied to DCT coefficients of Y component related to video (cover) frames. Both I and Q components of video frames are used for secure message insertion. The aim is to hide secret messages into non-zero coefficients of sparse representation of DCT called, I and Q video frames. Several experiments are performed to evaluate the performance of the proposed algorithm, in case of some metrics such as pick signal to noise ratio (PSNR), the hiding ratio (HR), bit error rate (BER) and similarity (Sim) of secret message, and also runtime. The simulation results show that the proposed method exhibits appropriate invisibility and robustness. 相似文献
15.
Image fusion is an important technique which aims to produce a synthetic result by leveraging the cross information available in the existing data. Sparse Representation (SR) is a powerful signal processing theory used in wide variety of applications like image denoising, compression and fusion. Construction of a proper dictionary with reduced computational efficiency is a major challenge in these applications. Owing to the above criterion, we propose a supervised dictionary learning approach for the fusion algorithm. Initially, gradient information is obtained for each patch of the training data set. Then, the edge strength and information content are measured for the gradient patches. A selection rule is finally employed to select the patches with better focus features for training the over complete dictionary. By the above process, the number of input patches for dictionary training is reduced to a greater extent. At the fusion step, the globally learned dictionary is used to represent the given set of source image patches. Experimental results with various source image pairs demonstrate that the proposed fusion framework gives better visual quality and competes with the existing methodologies quantitatively. 相似文献
16.
稀疏表示以其出色的分类性能成为说话人确认研究的热点,其中过完备字典的构建是关键,直接影响其性能。为了提高说话人确认系统的鲁棒性,同时解决稀疏表示过完备字典中存在噪声及信道干扰信息的问题,提出一种基于i-向量的主成分稀疏表示字典学习算法。该算法在高斯通用背景模型的基础上提取说话人的i-向量,并使用类内协方差归一化技术对i-向量进行信道补偿;根据信道补偿后的说话人i-向量的均值向量估计其信道偏移空间,在该空间采用主成分分析方法提取低维信道偏移主分量,用于重新计算说话人i-向量,从而达到进一步抑制i-向量中信道干扰的目的;将新的i-向量作为字典原子构建高鲁棒性稀疏表示过完备字典。在测试阶段,测试语音的i-向量在该字典上寻找其稀疏表示系数向量,根据系数向量对测试i-向量的重构误差确定目标说话人。仿真实验表明,该算法具有良好的识别性能。 相似文献
17.
Multimedia Tools and Applications - Compressed Sensing, an emerging framework for signal processing, can be used in image and video application, especially when available resources at the... 相似文献
18.
相对于非压缩感知帧定时同步方法,压缩感知帧定时同步方法可以降低系统的能量消耗,降低模拟数字转换器的设计难度。相对于压缩感知技术,单比特压缩感知仅保留观测值的符号信息,可进一步降低系统的能量消耗,降低模拟数字转换器的设计难度。为此,将单比特压缩感知技术引入到帧定时同步中,提出了一种基于单比特压缩感知的帧定时同步方法。提出方法首先在帧定时变换域对接收信号进行单比特的压缩采样;随后,利用采样到的比特流重构出用于帧定时同步的定时度量;最后,根据相关法帧定时同步准则,搜索重构到的定时度量,找到帧定时同步的索引位置。分析与仿真结果表明,相对于压缩感知帧定时同步方法,在相同的比特开销情况下,提出方法可改善帧定时同步的正确同步概率;在相同的正确同步概率情况下,提出方法所需比特数更少。同时,提出方法的量化过程仅需要电平比较器,降低了模拟数字转换器设计难度。 相似文献
19.
针对现有基于稀疏表示的目标检测算法采用同心双窗口构建背景字典的过程中,目标像元将会对背景字典产生干扰的问题,提出基于背景字典构造的稀疏表示高光谱目标检测算法.该算法将高光谱图像分解成低秩背景和稀疏目标,引入目标字典作为稀疏目标的先验信息,更好地分离目标和背景,构建纯净背景字典.通过在4个公开高光谱图像数据集上仿真分析,... 相似文献
|