首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
金刚石刀具的磨损情况决定其使用寿命。用金刚石PCD刀具切削6061-T6镁铝合金工件,通过不同切削速度、切削深度、振动频率、刀具后角时的切削力及切削温度变化,研究不同刀具前后角、进给量、切削转速时的工件表面粗糙度及刀具磨损面积。结果表明:金刚石刀具的切削力和切削温度随切削速度、切削深度的增加而增大,随振动频率的增加而减小;刀具后角增大,金刚石刀具的切削力呈先下降而后缓缓上升趋势,但对切削温度的影响很小。当刀具前角为10°,刀具后角为8°,切削速度为0.46?m/s,切削深度为28?μm,进给量为0.10?mm/r,切削转速为4100?r/min,振动频率为22?kHz,切削振幅为9?μm时,金刚石刀具的磨损面积最小,磨损程度最低,使用寿命最长,但工件的表面粗糙度稍高。   相似文献   

2.
为了探究CVD金刚石厚膜刀具切削参数(包括刀具后角、刀尖圆弧半径、切削速度、进给量和切削深度)对切削力和被加工表面粗糙度影响的初步规律,采用单因素方法进行了一系列CVD金刚石厚膜刀具车削仿真和试验研究。结果表明:AdvantEdge有限元仿真软件模拟切削力过程有一定的准确性;在试验参数范围内,随着刀具后角的增大,切削力和表面粗糙度都是先减小后增大,当后角为11°时,切削力和表面粗糙度值最小;随着刀尖圆弧半径的增大,切削力逐渐增大,而表面粗糙度则逐渐减小;随着切削速度的增大,切削力和表面粗糙度都是先增大后减小,当切削速度为90m/min时,切削力和表面粗糙度值最大;随着进给量的增大,切削力和表面粗糙度都显著增大;随着切削深度的增大,切削力和表面粗糙度都逐渐增大,但切削深度对表面粗糙度的影响较小。  相似文献   

3.
使用PCD刀具对氮化硅陶瓷内孔进行切削试验,首先研究氮化硅陶瓷材料的去除机理,主要包括脆性去除和塑性去除,且以脆性去除为主。其次,研究刀具前角、切削速度、背吃刀量和进给量对切削力的影响。结果表明:刀具前角对切削力的影响不明显;随切削速度、背吃刀量和进给量的增加,切削力均增大,且背向力大于进给力和主切削力。最后,重点研究各参数对内孔侧壁表面粗糙度的影响。结果表明:进给量对表面粗糙度的影响最显著,其次是背吃刀量和切削速度,刀具前角几乎没有影响,且当刀具前角为-5°,切削速度为32.97m/min,背吃刀量为0.10mm,进给量为0.08mm/r时,可以得到较好的表面粗糙度和刀具寿命的综合效益。   相似文献   

4.
为获得25CrMo4淬火钢的最优切削参数,应用Deform-3D软件建立三维有限元模型并对切削过程进行仿真,获得了不同切削速度、背吃刀量和进给量下切削温度的变化规律,通过对模拟结果评估获得了最佳切削参数。在最佳切削参数下进行切削实验,结果发现:随着切削速度、进给量和切削深度的增加切削温度都呈上升趋势;不同切削速度下的切削温度实验与模拟值非常吻合,这表明在实验切削速度范围内切削温度是优化切削参数的最主要物理量。  相似文献   

5.
钛合金切削表面残余应力影响因素及参数优化   总被引:1,自引:0,他引:1  
《铸造技术》2017,(1):34-38
钛合金切削过程具有温度高、摩擦力大、刀具严重磨损等缺点。为了减少钛合金表面出现微小裂纹,基于国内外研究现状,以Ti6Al4V切削表面残余应力为研究对象,建立了钛合金切削有限元模型。讨论了切削速度、切削深度、每齿进给量、不同切削用量对切削表面残余应力的影响。建立了切削表面残余应力回归模型,并采用混合遗传退火算法对切削参数进行优化,得到了最优切削参数组合。研究表明:切削速度增加,钛合金表面残余应力增加;切削深度对残余应力的影响较小;残余应力随着每齿进给量增加而减小。  相似文献   

6.
杜劲  王立国 《机床与液压》2018,46(11):131-134
为研究TiN涂层刀具切削淬硬H13钢的切削性能,进行了TiN涂层刀具车削加工淬硬H13钢试验。分析了切削用量与切削力、切削温度的关系及涂层刀具磨损机制。研究得出切削速度、切削深度、进给量都对主切削力Fz和切深抗力Fx影响较大,对切削进给抗力Fy影响相对较小;切削速度对切削温度的影响最大;对刀具磨损观察发现刀具的前刀面有明显的月牙洼磨损,刀尖部位出现了微崩刃现象,后刀面出现磨粒磨损。研究结果为生产加工中优化切削用量及提高刀具寿命提供了技术支持和试验依据。  相似文献   

7.
Ni-Ti-Nb宽滞后记忆合金的机械加工   总被引:2,自引:0,他引:2  
用正交试验法研究了Ni-Ti-Nb合金在不同切削速度、进给量和切削深度下的机械加工性能。结果表明:切削速度、进给量、切削深度对切削力和平均切削温度的影响基本上与45钢相同;切削时宜用K类硬质合金刀具,最佳切削速度为40m/min  相似文献   

8.
用车削刀片进行不锈钢刨槽加工广泛应用于家电、工程及装修等行业,刨槽时的切屑形式是影响刨槽质量的重要因素。本文基于金属切削仿真软件Third Wave AdvantEdge,建立了硬质合金车削刀片切削304#不锈钢时的仿真模型。通过模拟仿真及切削加工,验证了全新设计的刀片槽型能够获得刨槽加工时需要的切屑类型。结果表明:刀片槽型几何参数能够影响刨槽加工时的切屑类型,车削模拟仿真与刨槽切削验证试验结果一致,为进一步改进刨槽刀片的槽型提供了参考。同时通过仿真研究还发现,切削温度除受切削速度、进给量和切削深度影响之外,还受前角、刃倾角及排屑等因素的影响。当进给量f从0.1 mm/r提到高0.5 mm/r时,切削温度上升25%~50%;当第一前角增加1°、第二前角增加3°,刃倾角增加8°及槽宽增加0.5 mm时,切削温度降低18%~20%。  相似文献   

9.
Ni—Ti—Nb带滞后记忆合金的机械加工   总被引:2,自引:0,他引:2  
用正交试验法研究了Ni-TI-Nb合金在不同切削速度、进给量和切削深度下的机械加工性能。结果表明:切削速度、进给量、切削深度对切削力和平均切温度的影响基本上与45钢相同;切削时宜用K类硬质合金刀具,最佳切削速度为40m/min。  相似文献   

10.
超细晶硬质合金刀具由于具有更高的硬度和抗弯强度,可以满足现代制造业的更高要求,在难加工材料高速切削领域显示出明显优势。在不锈钢材料的加工过程中,切削温度对刀具的磨损有极大的影响,而多数实验方法很难测得刀具表面具体的温度分布。借助DEFORM仿真分析软件,模拟超细晶硬质合金刀具对304不锈钢的车削过程;依据正交试验方法,分析切削用量三要素切削速度、进给量和背吃刀量对刀具温度的影响规律;通过实际车削实验与仿真结果进行比较,并与普通晶粒硬质合金刀具进行对比。结果表明:与普通晶粒硬质合金刀具加工相似,切削速度对超细晶粒硬质合金刀具温度的影响程度最大,其次是进给量,最后是背吃刀量;超细晶粒硬质合金比普通晶粒硬质合金刀具具有更好的散热性,尤其在较高速度条件下切削,优势更加明显。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号