首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jixin Chen   《Journal of power sources》2010,195(4):1122-1129
In this study, the air–water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.  相似文献   

2.
《Journal of power sources》2006,154(1):124-137
Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air–water flow in parallel serpentine channels on cathode side of a PEM fuel cell stack by use of the commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air–water flow behaviours inside the serpentine flow channels with inlet and outlet manifolds were discussed. The results showed that there were significant variations of water distribution and pressure drop in different cells at different times. The “collecting-and-separating effect” due to the serpentine shape of the gas flow channels, the pressure drop change due to the water distribution inside the inlet and outlet manifolds were observed. Several gas flow problems of this type of parallel serpentine channels were identified and useful suggestions were given through investigating the flow patterns inside the channels and manifolds.  相似文献   

3.
In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.  相似文献   

4.
The kinetics and transport mechanisms of water droplets in model flow field channels of a low temperature polymer electrolyte fuel cell were investigated. The pressure drop at different air flows was measured for different channel geometries in a graphite plate as employed for fuel cell bipolar plates. The minimum air flow required for the movement of a water droplet in the flow channel was identified. From the experimental findings, recommendations for the development of flow fields with high condensate removal capabilities combined with low pressure differences were drawn to allow for an efficient operation of PEM fuel cells.  相似文献   

5.
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for polymer electrolyte membrane (PEM) fuel cells, as it ensures the removal of liquid water produced in a cell with good performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer (GDL) due to the high‐pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared with the case without cross flow. In this study, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the GDL between two successive U‐turns. The analytical solution predicts the amount of pressure drop and the average volume flow rate in the flow channel and the GDL. The solution is validated over a wide range of the thickness and permeability of the GDL by comparing the results with experimental measurements and 3‐D numerical simulations in literature. Excellent agreement is obtained for the permeability less than 10?9 m2, which covers the typical permeability values of the GDLs in actual PEM fuel cells. The solution presents an accurate and efficient estimation for cross flow providing a useful tool for the design and optimization of PEM fuel cells with serpentine flow channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Longer channels within serpentine flow fields are highly effective at removing liquid water slugs and have little water accumulation; however, the long flow path causes a large pressure drop across the cell. This results in both a significant concentration gradient between the inlet and outlet, and high pumping losses. Parallel flow fields have a shorter flow path and smaller pressure drop between the inlet and outlet. This low pressure drop and multiple routes for reactants in parallel channels allows for significant formation of liquid water slugs and water accumulation. To investigate these differences, a polymer electrolyte membrane fuel cell parallel flow field with the ability to modify the length of the channels was designed, fabricated, and tested. Polarization curves and the performance, water accumulation, and pressure drop were measured during 15 min of 0.5 A cm−2 steady-state operation. An analysis of variance was performed to determine if the channel length had a significant effect on performance. It was found that the longer 25 cm channels had significantly higher and more stable performance than the shorter 5 cm channels with an 18% and an 87% higher maximum power density and maximum current density, respectively. Channel lengths which result in a pressure drop, across the flow field, slightly larger than that required to expel liquid water slugs were found to have minimal water accumulation and high performance, while requiring minimal parasitic pumping power.  相似文献   

7.
Time-dependent measurements of pressure drop in different flow fields on the cathode of a PEM fuel cell with different operating conditions of mass flow rates and cell temperatures on water accumulation were conducted. The results show that, among four flow fields studied herein, the interdigitated flow channel has the biggest pressure drop as well as the largest water accumulation at an early phase (?30 min) compared to those of the other three channels. In addition, the more water produced, the bigger the pressure drop that occurs. Similarly, the effects of mass flow rates at a fixed cell temperature were also examined and discussed.  相似文献   

8.
Water management is a key area of interest in improving the performance of Proton Exchange Membrane fuel cells. Cell flooding and membrane dehydration are two extreme conditions arising from poor water management. Pressure drop has been recognized as a good diagnostic tool to determine the presence of liquid water in the reactant channels. Presence of liquid water in the channels increases the mass transport resistances and therefore reduces the cell performance, which is quantified by the cell voltage at a set current density. Since the two-phase pressure drop multiplier is uniquely related to the water content in the channel, it serves as a good diagnostic tool for directly predicting the cell performance. Experiments are carried out to establish the relationship between the pressure drop multiplier and cell voltage at different operating conditions. Cell temperature was varied from 30 °C to 80 °C and the inlet RH was varied from 0 to 95%. At the lower temperatures, a two-phase multiplier below 1.5 reduces flooding in the flow field. However, at the higher temperatures, a two-phase flow multiplier above 1.2 is preferred as it indicates the membrane remains hydrated for improved performance from the cell. The two-phase pressure drop multiplier has been successfully demonstrated as a diagnostic tool to predict cell flooding and membrane dehydration.  相似文献   

9.
A serpentine flow channel is one of the most common and practical channel layouts for a polymer electrolyte membrane (PEM) fuel cell since it ensures the removal of water produced in a cell with acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross to neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area altering reactant flow in the flow channel so that the resultant pressure and flow distributions are substantially different from that without considering cross flow, even though this cross flow has largely been ignored in previous studies. In this work, a numerical and experimental study has been carried out to investigate the cross flow in a PEM fuel cell. Experimental measurements revealed that the pressure drop in a PEM fuel cell is significantly lower than that without cross flow. Three-dimensional numerical simulation has been performed for wide ranges of flow rate, permeability and thickness of gas diffusion layer to analyze the effects of those parameters on the resultant cross flow and the pressure drop of the reactant streams. Considerable amount of cross flow through gas diffusion layer has been found in flow simulation and its effect on pressure drop becomes more significant as the permeability and the thickness of gas diffusion layer are increased. The effects of this phenomenon are also crucial for effective water removal from the porous electrode structure and for estimating pumping energy requirement in a PEM fuel cell, it cannot be neglected for the analysis, simulation, design, operation and performance optimization of practical PEM fuel cells.  相似文献   

10.
《Journal of power sources》2006,162(1):286-293
In situ non-intrusive measurements of water vapor partial pressure and temperature were performed simultaneously along two gas channels on the cathode side of a PEM fuel cell using tunable diode laser absorption spectroscopy. This measurement technique developed by us was utilized earlier to make measurements in a single bipolar plate channel of a prototype PEM fuel cell. The current study examines the variation of water partial pressure and temperature near the flow inlet and outlet during operation under both steady state and time-varying load conditions. For steady-state operation, an increase in the water vapor partial pressure was observed with increasing current density due to electrochemical production of water. As expected, the measurement channel near the inlet of the flow path showed a lower water vapor partial pressure than the outlet under identical load conditions; however, the quantitative distribution of water content across the cell is important to understanding operational behavior of a PEM fuel cell. These quantitative water concentration differences between two measurement channels are reported with variations in cell load and temperature. Temperature in the gas phase remained constant due to thermal equilibrium of the fuel cell. For time varying operation, no phase lag was observed between the load and the water vapor partial pressure. The outlet measurement channel showed higher partial pressure than the inlet with larger differences for increasing cell load. The transient data matched the steady-state measurements at the same conditions. A temperature rise from the controlled value was observed at high current densities for the unsteady operation; thus, the temperature did not equilibrate on the same time scale as the water partial pressure.  相似文献   

11.
《Journal of power sources》2006,162(1):415-425
In polymer electrolyte membrane (PEM) fuel cells, serpentine flow channels are used conventionally for effective water removal. The reactant flows along the flow channel with pressure decrease due to the frictional and minor losses as well as the reactant depletion because of electrochemical reactions in the cells. Because of the short distance between the adjacent flow channels, often in the order of 1 mm or smaller, the pressure gradient between the adjacent flow channels is very large, driving part of reactant to flow through the porous electrode backing layer (or the so-called gas diffusion layer)—this cross-leakage flow between adjacent flow channels in PEM fuel cells has been largely ignored in previous studies. In this study, the effect of cross-flow in an electrode backing layer has been investigated numerically by considering bipolar plates with single-channel serpentine flow field for both the anode and cathode side. It is found that a significant amount of reactant gas flows through the porous electrode structure, due to the pressure difference, and enters the next flow channel, in addition to a portion entering the catalyst layer for reaction. Therefore, mixing occurs between the relatively high concentration reactant stream following the flow channel and the relatively low reactant concentration stream going through the electrode. It is observed that the cross-leakage flow influences the reactant concentration at the interface between the electrode and the catalyst layer, hence the distribution of reaction rate or current density generated. In practice, this cross-leakage flow in the cathode helps drive the liquid water out of the electrode structure for effective water management, partially responsible for the good PEM fuel cell performance using the serpentine flow channels.  相似文献   

12.
A serpentine flow field with outlet channels having modified heights or lengths was designed to improve reactant utilization and liquid water removal in proton exchange membrane (PEM) fuel cells. A three-dimensional full-cell model was developed to analyze the effects of the contraction ratios of height and length on the cell performance. Liquid water formation, that influences the transport phenomena and cell performance, was included in the model. The predictions show that the reductions of the outlet channel flow areas increase the reactant velocities in these regions, which enhance reactant transport, reactant utilization and liquid water removal; therefore, the cell performance is improved compared with the conventional serpentine flow field. The predictions also show that the cell performance is improved by increments in the length of the reduced flow area, besides greater decrements in the outlet flow area. If the power losses due to pressure drops are not considered, the cell performance with the contracted outlet channel flow areas continues to improve as the outlet flow areas are reduced and the lengths of the reduced flow areas are increased. When the pressure losses are also taken into account, the optimal performance is obtained at a height contraction ratio of 0.4 and a length contraction ratio of 0.4 in the present design.  相似文献   

13.
The cross flow from channel to channel through gas diffusion layer (GDL) under the land could play an important role for water removal in proton exchange membrane (PEM) fuel cells. In this study, characteristics of liquid water removal from GDL have been investigated experimentally, through measuring unsteady pressure drop in a cell which has the GDL initially wet with liquid water. The thickness of GDL is carefully controlled by inserting various thicknesses of metal shims between the plates. It has been found that severe compression of GDL could result in excessive pressure drop from channel inlet to channel outlet. Removing liquid water from GDL by cross flow is difficult for GDL with high compression levels and for low inlet air flow rates. However, effective water removal can still be achieved at high compression levels of GDL if the inlet air flow rate is high. Based on different compressed GDL thicknesses, different GDL porosities and permeabilities were calculated and their effects on the characteristics of liquid water removal from GDL were evaluated. Visualization of liquid water transport has been conducted by using transparent flow channel, and liquid water removal from GDL under the land was observed for all the tested inlet air flow rates, which confirms that cross flow is practically effective to remove the liquid water accumulated in GDL under the land area.  相似文献   

14.
Various flow field designs have been numerically investigated to evaluate the effect of pattern and the cross-sectional dimensions of the channel on the performance of a large active area PEM fuel cell. Three types of multiple-serpentine channels (7-channels, 11-channels and 14-channels) have been chosen for the 200 cm2 fuel cell investigated and numerically analysed by varying the width and the land of the channel. The CFD simulations showed that as the channel width decreases, as in the 14-channels serpentine case, the performance improves, especially at high current densities where the concentration losses are dominant. The optimum configuration, i.e. the 14-channels serpentine, has been manufactured and tested experimentally and a very good agreement between the experimental and modelling data was achieved. 4 channel depths have been considered (0.25, 0.4, 0.6 and 0.8 mm) in the CFD study to determine the effects on the pressure drop and water content. Up to 7% increase in the maximum reported current density has been achieved for the smallest depth and this due to the better removal of excess liquid water and better humidification of the membrane. Also, the influence of the air flow rate has been evaluated; the current density at 0.6 V increased by around 25% when air flow rate was increased 4 times; this is attributed to better removal of excess liquid water.  相似文献   

15.
Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.  相似文献   

16.
《Journal of power sources》2006,157(1):226-243
Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air–water flow in micro-parallel-channels with PEM fuel cell stack inlet and outlet manifolds for the cathode, using a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air–water flow behaviours inside the straight micro-parallel-channels with inlet and outlet manifolds were simulated and discussed. The results showed that excessive and unevenly distributed water in different single PEM fuel cells could cause blockage of airflow or uneven distribution of air along the different flow channels. It is found that for a design with straight-channels, water in the outflow manifold could be easily blocked by air/water streams from the gas flow channels; the airflow could be severely blocked even if there was only a small amount of water in the gas flow channels. Some important suggestions were made to achieve a better design.  相似文献   

17.
Flow maldistribution usually happens in PEM fuel cells when using common inlet and exit headers to supply reactant gases to multiple channels. As a result, some channels are flooded with more water and have less air flow while other channels are filled with less water but have excessive air flow. To investigate the impact of two-phase flow maldistribution on PEM fuel cell performance, a Volume of Fluid (VOF) model coupled with a 1D MEA model was employed to simulate two parallel channels. The slug flow pattern is mainly observed in the flow channels under different flow maldistribution conditions, and it significantly increases the gas diffusion layer (GDL) surface water coverage over the whole range of simulated current densities, which directly leads to poor fuel cell performance. Therefore, it is recommended that liquid and gas flow maldistribution in parallel channels should be avoided if possible over the whole range of operation. Increasing the gas stoichiometric flow ratio is not an effective method to mitigate the gas flow maldistribution, but adding a gas inlet resistance to the flow channel is effective in mitigating maldistribution. With a carefully selected value of the flow resistance coefficient, both the fuel cell performance and the gas flow distribution can be significantly improved without causing too much extra pressure drop.  相似文献   

18.
Understanding the two-phase distribution characteristics within the multi-gas channel of a fuel cell is important for improving fuel cell performance. In the paper, the volume of fluid model is used to predict the dynamic behaviour of water in the multi-gas channel, analyze the pressure drop, velocity distribution, and flow resistance coefficient between different channels, and investigate the influence of operating conditions, surface wettability and channel structure on the two-phase distribution characteristics in the channel. The results show that water undergoes the processes of growth, separation, single droplet transport, wall impact, droplet collision, liquid film formation, and liquid film transport in the multi-gas channel. Inlet velocity and surface wettability significantly affect the pressure drop, water saturation, and surface water coverage. As the inlet velocity and gas diffusion layer surface wettability increase, the flow resistance coefficient and unevenness of the distribution decrease, indicating that the in-channel flow distribution homogeneity is enhanced. The rectangular channel has better water removal and flow distribution uniformity than the tapered channel, and the unevenness of distribution decreases significantly with decreasing rectangular width, from 0.15715 to 0.00315. The research work is a guide to understanding water transport in multi-gas channels, accelerating water removal, and improving inter-channel flow distribution uniformity.  相似文献   

19.
A 3D volume of fluid (VOF) model for an anode channel in a PEM fuel cell has been built. The effects of the initial position of the water droplet, its size as well as the wettability of the gas diffusion layer (GDL) are investigated under different operating conditions. It is found that the initial position of the relatively small water droplet in the channel has almost no effect on the pressure drop and the time taken for the liquid water to move out from the channel; however, such effects become more profound as the size of the water droplet increases. Also, when the droplet is placed at the side wall of the channel, then it develops into pockets of water that are mainly located at the upper corners of the channel, thus causing a smaller pressure drop compared to the cases in which the water droplet is placed either on the surface of the GDL or on the top wall of the channel. Furthermore, the hydrogen velocity is found to have a negligible effect on the dynamics of liquid water; however, the pressure drop and removal time are significantly influenced by the hydrogen velocity. Moreover, as the size of the water droplet increases, the pressure drop increases and the time required for the liquid water to move out of the channel decreases. Finally, the pressure drop in the channel decreases and the removal time of the liquid water increases as the contact angle of the GDL decreases.  相似文献   

20.
In this work, we investigated the key underlying flow characteristics of a circular unit cell proton exchange membrane (PEM) water electrolyser. In particular, we focused on investigating anode flow field design using computational fluid dynamics (CFD) tool. Transient, 3D single phase fluid flow simulation results were presented, and in-house experiments were conducted for validation against CFD simulation data identifying key performance parameters of the PEM water electrolyser: uniform water distribution, pressure drop and hydraulic retention time. The effects of the water flow rate, inlet and outlet sizing and different number of inlet and outlet configurations were considered. The main observation from the study was discussed to provide insight into the factors affecting the flow pattern. Among the studied flow field design cases, it was found that the average pressure drop decreased with increase in number of inlets, also flow profile can be grouped into different set, depending on number of inlets. The correlation between pressure drop and mean velocity profile for different inlet and outlet configurations provides a useful basis to properly design the high performance PEM water electrolyser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号