首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous incorporation of palladium and zirconium ions in Mg-Al layered double hydroxides (LDHs) was attempted by co-precipitation. Mixed oxides were obtained by calcination at 500 °C. XRD patterns of as-synthesized samples showed the formation of well-crystallized LDHs at lower Zr contents. The CO32− content of the solids has been determined to have information on the possible incorporation of Zr4+ into the brucite layer of the hydrotalcites. The values obtained showed that Zr4+ can incorporate into brucite sheets at Zr content lower than 10 mol%. SEM and TEM images indicated that the resulted LDHs with lower Zr content exhibited plate-like structure. Thermal calcination at 500 °C results in the formation of mixed oxides containing MgO, PdO, ZrO2 crystallites and a solid solution formed by some of the Zr4+ cations dissolving along with Al3+ to MgO lattice.  相似文献   

2.
Anodic films were grown potentiodynamically in different electrolytes (pH = 1-14) on a Ti-50Zr at% cast alloy, obtained by fusion in a voltaic arc under argon atmosphere. The thickness of the films was varied by changing formation potential from the open circuit potential up to about 9 V; growth was followed by 30 min stabilization at the forming potential. Films having different thicknesses were characterized by photocurrent spectroscopy (PCS) and electrochemical impedance spectroscopy (EIS). Moreover, film composition was analyzed by X-ray photoelectron spectroscopy (XPS).Regardless of the anodizing conditions, passive films on the Ti-50Zr at% alloy consist of a single layer mixed oxide phase containing both TiO2 and ZrO2 groups. However, an enrichment of Ti within the passive film, increasing with the film thickness, is detected both by PCS and XPS. This leads to concentration profiles of Ti4+ and Zr4+ ions along the thickness, and to different electronic properties of very thin films (more insulating) with respect to thicker films (more semiconducting), as revealed by the photocurrent-potential curves.  相似文献   

3.
A promising method of measuring surface temperatures in harsh environments is the use of thermographic phosphor coatings. There, the surface temperature is evaluated from the phosphorescence decay lifetime following a pulsed laser or flash lamp light excitation. Depending on the used dopant, single doped M3+:α-Al2O3 (M = Cr, Dy, Tm) emit at 694 nm (Cr3+), 488 nm (Dy3+), 584 nm (Dy3+), and 459 nm (Tm3+), respectively. However, the accessible temperature range with a single dopant is limited: for the Cr3+-transition from 293 K up to 900 K, and for the Dy3+ and Tm3+-transitions both from 1073 K up to 1473 K. In the present study a new approach is followed to extend these limitations by co-doping two dopants using the sol–gel method and dip coating of α-Al2O3 thin films. For that application (Dy3+ + Cr3+) co-doped thin α-Al2O3 films and (Tm3+ + Cr3+) co-doped α-Al2O3 films with thicknesses of 4–6 μm were prepared, and the temperature-dependent luminescence properties (emission spectra and lifetimes) were analysed after pulsed laser excitation in the UV (355 nm). The phosphorescence lifetime as a function of temperature were measured between 293 K and 1473 K. A considerably extended range for surface temperature evaluation was established following this new approach by combining different dopants on the molecular level.  相似文献   

4.
Effects of Fe3+ and Cr3+ ions on the performance of direct methanol fuel cell were investigated. The results show that the cell performance decreased remarkably when the concentration of Fe3+ or Cr3+ exceeded 1 × 10−4 mol L−1. Fe3+ displayed a strong negative effect on the catalytic oxidation of methanol, while Cr3+ affected the cell performance primarily by exchanging with protons of the membrane/ionomer and resulted in ionic conductivity losses. Complete recovery of the cell performance was not obtained after flushing the cell with deionized water.  相似文献   

5.
A highly Cr3+-selective ionophore, based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide (APC) as a carrier, was synthesized in order to obtain a Cr3+ ion-selective electrode. The demonstrated characteristics of the sensor included a linear dynamic range between 1.0 × 10− 6 and 1.0 × 10− 1 M with a near Nernstian slope of 19.6 ± 0.4 mV per decade, a detection limit of 5.3 × 10− 7 M, a very good selectivity for Cr3+ over other cations in a wide pH range (3.2-6.3). Furthermore, the newly-designed electrode presented a fast response time of 10 s with a lifetime of at least 2 months indicating no considerable potential divergence. The sensor accuracy was investigated by the potentiometric titration of a Cr(III) solution with EDTA as well as the monitoring of Cr(III) in mixtures of three and five different ions. As a result, the developed sensor provided satisfactory results after its application in the Cr3+ determination in biological samples (urine and synthetic plasma) and also in wastewater of chromium electroplating industries.  相似文献   

6.
The paper reports the use of La2O3 and ZrO2 co-doping as a composite sintering aid for the fabrication of Tm:Y2O3 transparent ceramics. Two groups of experiments were conducted for investigating the influences of composite sintering aids on the microstructures and the optical properties of Tm:Y2O3 transparent ceramics in contrast to single La3+ and single Zr4+ doped Tm:Y2O3. Samples with composite sintering aids could realize fine microstructures and good optical properties at relatively low sintering temperatures. Grain sizes around 10 μm and transmittances close to theoretical value at wavelength of 2 μm were achieved for the 9 at.% La3+, 3 at.% Zr4+ co-doped samples sintered at 1500-1600 °C. The influences of the composite sintering aids on the emission intensities and the phonon energies of Tm:Y2O3 ceramics were also investigated.  相似文献   

7.
In order to understand the adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons, the carbon yield, specific surface area, micropore area, zeta potential, and the effects of pH value, soaking time and dosage of bamboo activated carbon were investigated in this study. In comparison with once-activated bamboo carbons, lower carbon yields, larger specific surface area and micropore volume were found for the twice-activated bamboo carbons. The optimum pH values for adsorption capacity and removal efficiency of heavy metal ions were 5.81–7.86 and 7.10–9.82 by Moso and Ma bamboo activated carbons, respectively. The optimum soaking time was 2–4 h for Pb2+, 4–8 h for Cu2+ and Cd2+, and 4 h for Cr3+ by Moso bamboo activated carbons, and 1 h for the tested heavy metal ions by Ma bamboo activated carbons. The adsorption capacity and removal efficiency of heavy metal ions of the various bamboo activated carbons decreased in the order: twice-activated Ma bamboo carbons > once-activated Ma bamboo carbons > twice-activated Moso bamboo carbons > once-activated Moso bamboo carbons. The Ma bamboo activated carbons had a lower zeta potential and effectively attracted positively charged metal ions. The removal efficiency of heavy metal ions by the various bamboo activated carbons decreased in the order: Pb2+ > Cu2+ > Cr3+ > Cd2+.  相似文献   

8.
Zr4+/Ti4+‐codoped LiNbO3 plates were prepared by local codiffusion of stacked ZrO2 and Ti metal films coated onto Z‐cut congruent LiNbO3 substrates in wet O2 at 1060°C. The metal and oxide films have different thicknesses and coating sequences. After diffusion, the Zr4+ doping effect on the refractive index of LiNbO3 and the Li2O out‐diffusion issue were studied by the prism coupling technique. The codiffusion characteristics of Zr4+ and Ti4+ were studied by secondary ion mass spectrometry. The results show that the Zr4+ doping has little contribution to the refractive index of the crystal. Li2O out‐diffusion is not measurable. In the Zr4+‐only diffusion case, the diffusivity of Zr4+ is four times smaller than that of Ti4+. In the Zr4+/Ti4+ codiffusion case, the Ti4+ codiffusion assists the Zr4+ diffusion. The Zr4+ diffusivity increases linearly by two more times with the increase in initial Ti film thickness from 0 to 200 nm. On the other hand, the Zr4+ affects the Ti4+ diffusion little. Neither the ZrO2 film thickness nor the coating sequence of Ti metal and ZrO2 oxide films influences the diffusivity of the two ions. All the codiffusion characteristics are explained. A Zr4+/Ti4+ codiffusion model is suggested that consists of two independent diffusion equations with a Zr4+ diffusivity dependent of Ti4+ concentration and a constant Ti4+ diffusivity. In addition, the existence of a waveguide in the Zr4+/Ti4+‐codoped layer is verified experimentally, and the optical‐damage‐resistant feature of the waveguide is verified by two‐beam hologram recording experimental results.  相似文献   

9.
This study presents an evaluation of structural changes resulting from cycling modified copper/nickel LiMn2O4 spinels at 263 K. In situ synchrotron XRD shows that cycling LiMn2O4 at 263 K resulted in the formation of mixed cubic and tetragonal phases with a consequent lower capacity. The differential capacitance profile normally exhibiting two peaks at 298 K is modified, showing only one oxidation peak at 263 K in the 4 V region. The changes observed are attributed to interactions between Jahn-Teller active Mn3+ species and Li+ ions. These changes are not observed once copper/nickel modified spinels are being evaluated, because of the decrease in Mn3+ population. All the observed changes are fully reversible once the material is cycled back at 298 K.  相似文献   

10.
In this paper, we studied the development of a selective lithium ion sensor constituted of a carbon paste electrode modified (CPEM) with an aluminum-doped spinel-type manganese oxide (Li1.05Al0.02Mn1.98O4) for investigating the influence of a doping ion in the sensor response. Experimental parameters, such as influence of the lithium concentration in the activation of the sensor by cyclic voltammetry, pH of the carrier solution and selectivity for Li+ against other alkali and alkaline-earth ions were investigated. The sensor response to lithium ions was linear in the concentration range 5.62 × 10−5 to 1.62 × 10−3 mol L−1 with a slope 100.1 mV/decade over a wide pH 10 (Tris buffer) and detection limit of 2.75 × 10−5 mol L−1, without interference of other alkali and alkaline-earth metals, demonstrating that the Al3+ doping increases the structure stability and improves the potentiometric response and sensitivity of the sensor. The super-Nernstian response of the sensor in pH 10 can be explained by mixed potential arising from two equilibria (redox and ion-exchange) in the spinel-type manganese oxide.  相似文献   

11.
This study analyses the influence of Ni in the electrochemical behaviour of three different stainless steels in alkaline medium. The studied steels have increasing Ni content: AISI 430, AISI 304L and AISI 316. The obtained results are compared with those of a nickel base alloy (Ni > 42%, w/w) and a pure Ni electrode. Electrochemical impedance spectroscopy and cyclic voltammetry have been the main tools used to study the growth and evolution of the passive layers formed on those materials in alkaline medium. XPS and SEM have been employed for chemical and morphological characterization of the developed passive films.The presence of Ni promotes the formation of thinner and more protecting passive films. This fact noticed in the XPS analysis is reflected in the cyclic voltammograms by an important decrease of the magnetite formation peak current as well as that corresponding to Cr3+/Cr6+ oxidation. The low frequency limit of complex plane impedance plots also increases with the Ni content. In order to better characterise the resistivity of the electrochemically formed films, a more detailed impedance analysis in the high frequency range (1 kHz-10 MHz) has been performed. The analysis of the registered spectra indicates that Ni modifies the conductivity of the oxide layers, promoting the formation of more resistive oxide films.  相似文献   

12.
Sputter-deposited zirconium and Zr-16 at.% Si alloy have been anodized to various voltages at several formation voltages in 0.1 mol dm−3 ammonium pentaborate electrolyte at 298 K for 900 s. The resultant anodic films have been characterized using X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy, and electrochemical impedance spectroscopy. The anodic oxide films formed on Zr-16 at.% Si are amorphous up to 30 V, but the outer part of the anodic oxide films crystallizes at higher formation voltages. This is in contrast to the case of sputter-deposited zirconium, on which the crystalline anodic oxide films, composed mainly of monoclinic ZrO2, are developed even at low formation voltages. The outer crystalline layer on the Zr-16 at.% Si consists of a high-temperature stable tetragonal phase of ZrO2. Due to immobile nature of silicon species, silicon-free outermost layer is formed by simultaneous migrations of Zr4+ ions outwards and O2− ions inwards. An intermediate crystalline oxide layer, in which silicon content is lower in comparison with that in the innermost layer, is developed at the boundary of the crystalline layer and amorphous layer. Capacitances of the anodic zirconium oxide are highly enhanced by incorporation of silicon due to reduced film thickness, even though the permittivity of anodic oxide decreases with silicon incorporation.  相似文献   

13.
Conducting polypyrrole membranes were deposited on glassy carbon electrodes by electropolymerizing pyrrole in the presence of Eriochrome Blue-Black B (EBB) as the counter anion. The electrodes were then subjected to several oxidation/reduction potential steps in pure silver nitrate solution for successive accumulation/stripping of silver species. This electrochemically mediated doping/templating generated selective recognition elements in the EBB/PPy film for silver ions. The resulting sensor exhibited a considerable enhancement in the potentiometric and voltammetric response characteristics: extending the linear dynamic range and lowering the detection limit. In the potentiometric mode, the sensor showed highly reproducible response with a Nernstian slope of 58.5 ± 0.3 mV per decade of Ag+ activity over a linear range spanning seven orders of magnitude (1 × 10−8 to 1 × 10−1 M Ag+), with a detection limit of ∼6 × 10−9 M. The electrodes demonstrated high selectivity over a large number of cations including alkali, alkaline earth and several transition and heavy metal ions, and could be used over a wide pH range of 1-8.5. The EBB/PPy modified electrode was also used for preconcentration and differential pulse anodic stripping voltammetric (DPASV) measurements. The DPASV peak current was dependent on the concentration of Ag+ over the range 3 × 10−10 to 1 × 10−4 M. The presence of 1000-fold excess of Cd2+, Cu2+, Cr3+, Co2+, Mn2+, Fe2+, Fe3+, Ni2+ and Pb2+ can be tolerated in the determination of silver ion.  相似文献   

14.
Pure BiFeO3 and rare earth and transition metal ions co-doped (Bi0.9Dy0.1)(Fe0.975TM0.025)O3±δ (TM=Ni2+, Cr3+ and Ti4+) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The changes in the microstructure and the electrical properties with doping elements were investigated. The thin films were well crystallized and randomly oriented, with no detectable impurity and secondary phases. The leakage current densities were reduced and the ferroelectric properties were improved in the co-doped thin films. Among the thin films, the (Bi0.9Dy0.1)(Fe0.975Cr0.025)O3 thin film exhibited well saturated hysteresis loops with remnant polarization (2Pr) of 36 μC/cm2 and coercive electric field (2Ec) of 954 kV/cm at 1000 kV/cm and low leakage current density of 1.91×10−5 A/cm2 at 100 kV/cm. The enhanced properties observed in the co-doped thin films could be considered as being the result of the suppression of oxygen vacancies and of the modified microstructure.  相似文献   

15.
The Cr3+ ions doped multi-oxide ZnFe2−xCrxO4 ferrite nanoparticles have been synthesized by chemical co-precipitation method. Site occupancies of Zn2+, Cr3+ and Fe3+ ions were analyzed using X-ray diffraction data and Buerger's method. The effect of the constituent phase variation on the magnetic hysteresis behavior was examined by saturation magnetization which decreases with the increase in Cr3+ content in place of Fe3+ ions at octahedral B-site. Typical blocking temperature (TB) around 90 K was observed by zero field cooling and field cooling magnetization study. Room temperature Mössbauer spectra show two paramagnetic doublets (tetrahedral and octahedral sites). The isomer shifts of both doublets decrease whereas quadrupole splitting and relative area of tetrahedral A-site increases with increasing Cr3+ substitution. The dielectric constant (measured on compositions x=0, 0.4, 0.8 and 1.0) increases when the temperature increases as in the semiconductor. This behavior is attributed to the hopping of electrons between Fe2+ and Fe3+ ions with a thermal activation.  相似文献   

16.
Rice hull was calcined to rice hull ash (RHA) at 500 °C under 20 mL air/s for 50 min. The RHA thus prepared has been found to be able to remove chromium (III) ion from aqueous solution, though not very efficient. The experiments indicated that the rate of removal of Cr3+ and the removal of Cr3+ at equilibrium was increased upon decreasing the RHA dosage. The removal could also be enhanced upon increasing the initial chromium concentration, or adsorption temperature. However, pH in the range of 2.5-5.4 or stroke speed higher than 120 stroke/min could not change the removal. The dependence of the RHA dosage and the initial chromium concentration on the removal have been found to be strong, while that of adsorption temperature is mild. An empirical equation correlating the relationship between the removal of Cr3+ and the adsorption time was determined.  相似文献   

17.
A controllable assembly technique of [Ru(bpy)2IP]3+/2+ (where bpy = 2,2′-bipyridine and IP = imidazo[4,5,f][1,10]phenanthroline) promoted by calf thymus DNA at an ITO electrode is proposed. The stable assembled layer containing [Ru(bpy)2IP]3+/2+ and double stranded DNA is obtained on the ITO electrode using repetitive voltammetric sweeping, confirmed by ex situ voltammetry, X-ray photoelectron spectroscopy (XPS) and the inverted fluorescence microscopy. There exist two pairs of diffusion-controlled waves and two pairs of prewaves for [Ru(bpy)2IP]2+ in the voltammetric sweeping process. The half-wave potentials of the prewaves are far more negative than those of the diffusion-controlled waves. These experimental results suggest that double stranded DNA is enable to accelerate and increase the controllable assembly of Ru(bpy)2IP]3+/2+ by using the ITO surface. The fluorescence microscopy imaging reveals that [Ru(bpy)2IP]3+/2+ has the ability to bind with double strand DNA. The fluorescence intensity of [Ru(bpy)2IP]3+/2+ with DNA is stronger than that without DNA.  相似文献   

18.
The generation of oxygen gas within an amorphous anodic alumina film is reported. The film was formed by anodizing aluminum, which was first electropolished and then chemically polished in CrO3-H3PO4 solution, in sodium tungstate electrolyte. The procedure results in incorporation of mobile Cr3+ species, from the chemical polishing film, and mobile W6+ species, from the electrolyte, into the amorphous structure. The tungsten species are present in the outer 27% of the film thickness, while Cr6+ species occupy a thin layer within the tungsten-containing region. Above the Cr3+ containing layer, a band develops that contains oxygen bubbles of a few nanometres size. The oxygen is generated by oxidation of O2− ions of the alumina. A mechanism of oxygen generation within the alumina is proposed based on the electronic band structure of the oxide, modified by the Cr3+ and W6+ species, and on the ionic transport processes during oxide growth.  相似文献   

19.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

20.
Ultra-thin Cr2O3 films (12.0, 17.3 and 29.6 nm thick) were produced on Cr metal by thermal oxidation, and their electrochemical properties in 1 M LiClO4 in propylene carbonate (PC) were investigated by cyclic voltammetry and chronopotentiometry. The reductive electrolyte decomposition and the conversion/deconversion process were observed and analyzed by X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The initial irreversible capacity due to the reduction of electrolyte and the incomplete deconversion process during the first cycle is 70% of the first discharge capacity. A stable charge/discharge capacity of 460 mAh g−1 was obtained in the 3rd to 10th cycles. XPS and PM-IRRAS evidenced the growth of a solid electrolyte interphase (SEI) layer that is constituted of Li2CO3 formed by reductive decomposition of the electrolyte. The SEI layer thickness and/or density is modified by the conversion/deconversion reaction. ToF-SIMS evidenced the volume expansion/shrink resulting from the conversion/deconversion reaction. ToF-SIMS also revealed an incomplete conversion process limited by mass transport, which partitions the oxide into a converted outer part assigned to Li2O containing Cr traces and an unconverted inner part ascribed to Cr2O3 or lower Cr oxide containing Li. It was found that the deconversion re-homogenizes the oxide film in a single layer but with lithium trapped in it. The present study provides a detailed understanding of the interfacial reaction on the oxide anode undergoing a conversion/deconversion reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号