首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kraft pulp fiber reinforced cement-based materials are being increasingly used where performance after exposure to environmental conditions must be ensured. However, significant losses in mechanical performance due to wet/dry cycling have been observed in these composites, when portland cement is the only cementitious material used in the matrix. In this research program, the effects of partial portland cement replacement with various supplementary cementitious materials were investigated. Binary, ternary, and quaternary blends of silica fume, slag, Class C fly ash, Class F fly ash, metakaolin, and diatomaceous earth/volcanic ash blends were examined for their effect on the degradation of kraft pulp fiber-cement composite mechanical properties (i.e., strength and toughness) during wet/dry cycling. After 25 wet/dry cycles, it was shown that binary composites containing 90% slag, 30% metakaolin, or greater than 30% silica fume did not exhibit any signs of degradation, as measured through mechanical testing and microscopy. Ternary blends containing 70% slag/10% metakaolin or 70% slag/10% silica fume were also effective in preventing degradation. A reduction in calcium hydroxide content and the stability of the alkali content due to supplementary cementitious material addition were shown to be primary mechanisms for improved durability.  相似文献   

2.
The objective of this paper was to study glass fiber reinforced cementitious composites (GFRCC) with Portland cement, a high content of fly ash as matrix. The effect of fly ash content, the initial curing time, and accelerated ageing on the flexural strength of GFRCC was investigated. The suitability of the accelerated ageing method was queried by analyzing the results from SEM observation, XRD analysis, and deflection testing.  相似文献   

3.
Abstract

Unidirectional isora fibre reinforced epoxy composites were prepared by compression moulding. Isora is a natural bast fibre separated from Helicteres isora plant by retting process. The effect of alkali treatment on the properties of the fibre was studied by scanning electron microscopy (SEM), IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Mechanical properties such as tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali treated fibres have been studied as a function of fibre loading. The optimum fibre loading for tensile properties of the untreated fibre composite was found to be 49% by volume and for flexural properties the loading was optimised at ~45%. Impact strength of the composite increased with increase in fibre loading and remained constant at a fibre loading of 54·5%. Alkali treated fibre composite showed improved thermal and mechanical properties compared to untreated fibre composite. From dynamic mechanical analysis (DMA) studies it was observed that the alkali treated fibre composites have higher E' and low tan δ maximum values compared to untreated fibre composites. From swelling studies in methyl ethyl ketone it was observed that the mole percentage of uptake of the solvent by the treated fibre composites is less than that by the untreated fibre composites. From these results it can be concluded that in composites containing alkalised fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

4.
In this study, experimental investigations were performed on steel mesh (SM), steel fibre (SF) and high-performance polypropylene fibre (HPPF) reinforced shotcrete (HPPFRS) panels to evaluate performance characteristics such as toughness, flexural ductility, energy absorption and load capacity. The panel tests, in accordance with European specification for sprayed concrete (EFNARC), were made on 18 prismatic specimens having the same mix designs and were cured for 28 days but reinforced with various fibres. In addition, the rebound characteristics of these mixes were determined to compare the actual in situ fibre contents.Test results show that all reinforcements, including HPPFs that are low-modulus fibres, greatly improved the flexural ductility, toughness, and load-carrying capacity of the brittle matrix. It was seen that there was a positive synergy effect between steel and polypropylene fibre in hybrid fibre usage from a performance point of view. According to results, it can be concluded that a hybrid polypropylene-SF can be used alternatively instead of SM and monosteel fibre as a reinforcement in shotcrete applications to get better efficiency in mechanical properties of composite.  相似文献   

5.
In recent years, sisal fibres have become a promising reinforcement for composites because of their low cost, low density, high specific strength, high specific modulus, easy availability and renewability. However, the poor adhesion between the hydrophilic sisal fibre and the hydrophobic thermoplastic matrices has adversely affected the widespread use of these composites. In this study, argon and air-plasma treatments have been used to modify the fibre surfaces under suitable treatment parameters to improve the compatibility between sisal fibres and polypropylene (PP). Sisal fibres and PP fibres are blended together to form a random mat which is then vacuum hot-pressed into a preimpregnated composite sheet. Mechanical properties such as tensile strength and modulus, flexural strength and modulus, and the storage modulus of the composite sheets improve after the incorporation of plasma-treated fibres. Furthermore, scanning electron microscopy analyses reveal the increased surface roughness of sisal fibre. Surface characterisation has been performed by X-ray photoelectron spectroscopy, showing an increase in oxygen/carbon ratio of sisal fibres after plasma treatment.  相似文献   

6.
《Ceramics International》2021,47(19):27107-27121
While the 3D printing technology for cementitious composites has developed rapidly, a combination of 3DP technology and lightweight engineered cementitious composites (LWECCs) could improve many aspects of the construction industry. In this study, a fibre-reinforced high-performance LWECC for extrusion-based printing was proposed. First, six LWECCs were prepared, incorporating two kinds of hollow glass microspheres (HGMs) in varying replacement ratios of fly ash (FA) at 60 wt%, 80 wt%, and 100 wt%. In addition, polyvinyl alcohol (PVA) fibre was introduced given its shrinkage resistance and improvement in printability performance. Thereafter, fresh property (slump loss and setting time), unconfined compression strength (UCS), and flexural strength experiments thoroughly investigated the optimised LWECC design, which was later calibrated for the printing procedure via a printability assessment, including extrudability and buildability. The UCS, flexural strength, and densities of the printed and cast specimens were compared. Lastly, a microstructural investigation using a scanning electron microscope described the reinforcement mechanism of PVA fibre upon the performance of the printed structures and HGMs. The addition of HGMs significantly improve the lightweight property that reaches a value at 1384 kg/m3 but inevitably negates mechanical properties. The printed LWECC obtains 33.6 MPa for UCS and 9.29 MPa for flexural strength. When the printed filament was perpendicular to loading direction, superior toughness was observed, creating a 63% and 40% increase for UCS and flexural strength, respectively.  相似文献   

7.
The objective of this research article is to compare the mechanical and tribological properties of jute‐glass‐fiber‐reinforced epoxy (J‐G‐E) hybrid composites with and without fly ash particulate filler. A dry hand lay‐up technique is used to fabricate all the laminates. The properties including flexural strength, tensile strength, flexural modulus, and erosion behavior of all the composites are evaluated as per American Society for Testing and Materials (ASTM) standards. The fly ash particulate‐filled hybrid composite shows a better mechanical and tribological property. The maximum flexural strength and flexural modulus are obtained for GJGJ+ 5 wt% fly ash filler epoxy composites. Whereas the maximum tensile strength is obtained for GJJG+ 10 wt% fly ash filler epoxy composites. Scanning Electron Microscopy (SEM) analysis also has been carried out to categorize mechanical and tribological behavior of composites. POLYM. COMPOS. 37:658–665, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
《Ceramics International》2022,48(5):6808-6818
In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground granulated blast furnace slag (GGBFS). Different percentages of PP and steel fibers are used in geopolymer mortars to find the mechanical properties such as compressive, splitting tensile and flexural strengths were investigated to understand the strength behavior. However, the compressive elastic modulus values were estimated through the proposed equation based on the compressive strength of the fiber reinforced geopolymer composite samples. Moreover, to understand the geopolymeic reaction, microstructural studies, i.e., scanning electron microscopy (SEM), were conducted. The experimental results revealed that the addition of PP fibers up to 2.0% (volume fraction) enhanced the flexural properties of geopolymer mortar samples. The compressive strength of the steel fiber-reinforced geopolymer composite reached a maximum of 2.5% volume fraction, being a 13.26% improvement over the control mix. The flexural toughness index of the PP and steel fiber reinforced composites improved with increasing the fraction. However, steel fiber reinforced geopolymer samples are shown better flexural toughness compared to PP fibers. The SEM analysis of the geopolymer control mix achieved a good degree of geopolymerization and both the fibers yielded a considerable interfacial bonding with the geopolymer paste.  相似文献   

9.
In this study, the effects of fly ash in composites fabricated by injection molding are examined. Taguchi design of experiment was first utilized to estimate the effects different injection molding conditions and content ratios of fly ash have on a linear low‐density polyethylene (LLDPE)‐fly ash composite. The results reveal that the content of fly ash is highly significant and contributive to the shrinkage ratio and bending strength. For these reasons, LLDPE and polypropylene (PP) composites with different size particles of fly ash were fabricated and the mechanical properties were investigated. The particle size was changed by grinding fly ash with a planetarium ball mill. The shrinkage ratio, bending strength and flexural modulus of LLDPE composites containing raw fly ash were found to improve. The shrinkage ratio and flexural modulus of PP composites containing ground fly ash were also found to improve. Homogenization analysis using the finite element method was then used to calculate the Von Mises stress distributions and homogenized elastic matrix of PP composites containing ground fly ash. The homogenized elastic matrix was used to validate the experimental flexural modulus. The results show that the homogenized elastic matrix is in good agreement with the experimental flexural modulus. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
高掺量粉煤灰高延性水泥基复合材料的制备和性能   总被引:2,自引:0,他引:2  
高延性水泥基复合材料(hjgh ductility cementitious composites,HDCC)是一种具有应变硬化、多缝开裂和高延性等特性的新型纤维增强水泥基复合材料,其材料设计必须取得基体韧度、界面黏结和纤维特性三者的最优组合,因此,HDCC的制备必须优选原材料和优化配合比,以取得最优的材料制备技术.从配合比设计入手,研究了粉煤灰含量、胶砂比等对HDCC力学性能的影响,优化了特定材料下的材料制各技术.结果表明:粉煤灰含量、胶砂比和养护条件对HDCC的拉伸性能均具有较大的影响.随着粉煤灰掺量的增大,砂含量的降低,拉伸应变增大.当砂含量较高时,基体开裂韧度较高,基体的极限拉伸应力下对应的极限拉伸应变较小,然而随着应力的下降,复合材料仍然能维持相当大的应变·  相似文献   

11.
Blending of coal tar pitch with a polyimide precursor based on acetyl derivatives of aromatic diamines during its synthesis leads to a homogeneous, highly thermostable matrix for carbon fibre reinforced composites. If the weight content of the pitch in the polyimide matrix does not exceed 40%, the mechanical properties (flexural strength, shear modulus and fracture toughness) of these composites are comparable to those of similar composites based on a pure polyimide matrix. Carbonisation and graphitisation of the composites with a properly blended matrix precursor leads to carbon fibre reinforced carbon composites with lower open porosity and higher density, elastic modulus and flexural strength than those of composites based on a pure polyimide matrix.  相似文献   

12.
采用有机硅柔软剂对国产聚乙烯醇(PVA)纤维进行表面改性,并制备了纤维增强水泥基复合材料(PVA-ECC)。采用扫描电子显微镜研究了有机硅柔软剂改性对PVA纤维表面结构的影响,用三点弯曲试验研究了有机硅柔软剂改性的PVA纤维对PVA-ECC复合材料弯曲性能的影响。研究结果表明:随着有机硅柔软剂含量的增加,PVA-ECC的极限弯曲强度和极限跨中挠度均先增加再减小,当有机硅柔软剂质量分数为7%时,极限弯曲强度和极限跨中挠度达到最大值,分别为5.627 MPa和2.123 mm;用ASTM C1609标准分析PVA-ECC三点弯曲韧性,当有机硅柔软剂质量分数为7%时,弯曲韧性达到最大值。  相似文献   

13.
宇平  章于川 《塑料助剂》2013,(4):31-34,43
制备了聚氯乙烯/粉煤灰复合材料,研究了粉煤灰的不同表面处理方式对共混物的力学性能和耐温性能的影响。结果表明:湿法处理粉煤灰的效果最好,不做处理的效果最差;粉煤灰会降低PVC材料的缺口冲击强度;添加5份处理过的粉煤灰可以提高PVC材料的拉伸强度;添加粉煤灰可以提高PVC材料的弯曲强度和弯曲模量,同时,耐温性也有一定的提高。  相似文献   

14.
施惠生  郭晓潞  张迪 《水泥》2010,(12):1-4
以钢渣、粉煤灰等固体废物,掺加少量的普通硅酸盐水泥、脱硫石膏,辅以适量化学激发剂,研制开发新型复合胶凝材料。试验表明,少量水泥能够有效地激发出钢渣-粉煤灰体系潜在的活性,单掺水泥的钢渣-粉煤灰体系最优配比为:钢渣/粉煤灰=6:4,水泥掺量为15%;对于复掺水泥和脱硫石膏的钢渣-粉煤灰体系来说,最优配比为钢渣/粉煤灰=6:4,水泥掺量为15%,脱硫石膏掺量为10%。合适的化学激发剂可以较好地提高复合胶凝材料的性能,复合胶凝材料在自然养护的条件下比标准养护条件下强度增长更快。  相似文献   

15.
The toughened polypropylene (PP) was obtained by the blending of PP with ethylene‐propylene diene monomer (EPDM). The impact property of continuous glass mat‐reinforced polypropylene was adjusted through three ways: different toughness PPs and their blends were used as matrices, the functionalized polypropylene was added into the matrix to control the interfacial adhesion; the ductile interlayer was introduced at the fiber/matrix interphase by the grafting and crosslinking of rubber chains on fiber surface. The effect of PP toughness, interfacial adhesion, and ductile interlayer on the mechanical properties of composite systems was studied. The impact toughness of GMT increased with increasing the matrix toughness, whereas the flexural strength and modulus decreased. The good interfacial adhesion resulted in the low impact toughness. However, GMT composite with high strength, modulus, and impact toughness could be obtained by the introduction of a ductile interlayer at fiber/matrix interphase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2680–2688, 2002  相似文献   

16.
The present study deals with the development of composite materials utilizing recycled poly(vinyl chloride) (r‐PVC) recovered from waste electrical and electronic materials and waste fly ash obtained from thermal power plants. The effect of the incorporation of fly ash on the mechanical, thermal and morphological properties of the r‐PVC matrix was studied. The primary characterization of r‐PVC and fly ash was done employing FTIR, EDX, particle size analysis and XRD analysis. Subsequently, fly ash with a particle size of approximately 9.29 μm was incorporated within the r‐PVC matrix. Composite sheets were prepared using a melt blending process followed by compression moulding. The mechanical test revealed an increase in the tensile strength and elongation at break of the r‐PVC/fly ash composite up to 30 wt% loading of fly ash beyond which there was a decrease in the tensile strength. The impact strength, however, decreased with increasing fly ash content in the r‐PVC matrix. The morphological properties of the composites showed a good distribution of the filler within the recycled matrix. The thermal properties of r‐PVC also improved with the incorporation of fly ash which was revealed from DSC and TGA studies. The water absorption test showed an increase in water uptake with the addition of fly ash in the r‐PVC matrix. © 2020 Society of Chemical Industry  相似文献   

17.
Structural composites with a high content of renewable material were produced from natural fibres and an acrylated epoxidized soybean oil resin. Composites were prepared by spray impregnation followed by compression moulding at elevated temperature. The resulting composites had good mechanical properties in terms of tensile strength and flexural strength. Tensile testing as well as dynamical mechanical thermal analysis showed that increasing the fibre content, increased the mechanical properties. The resin can be reinforced with up to 70 wt % fibre without sacrifice in processability. The tensile modulus ranged between 5.8 and 9.7 GPa depending on the type of fibre mat. The study of the adhesion by low vacuum scanning electron microscopy shows that the fibres are well impregnated in the matrix. The aging properties were finally evaluated. This study shows that composites with a very high content of renewable constituents can be produced from soy bean oil resins and natural fibres. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Abstract

The mechanical behaviour of long discontinuous glass fibre (LGF) reinforced polypropylene (PP) composites filled with talc or calcium carbonate fillers was studied. Sample specimens were processed by injection moulding, after which tensile and impact properties were analysed. In addition, scanning electron microscopy was used to analyse the morphology of the fracture surfaces. The results showed that the use of talc as a hybrid filler in LGF reinforced PP leads to a better tensile strength and toughness than in a corresponding hybrid composite based on calcium carbonate. Furthermore, it was observed that the matrix had a dominant role at low fibre content, whereas at high fibre loading, the effect of fibres was more evident.  相似文献   

19.
This paper investigates the effect of fibres on the physical and mechanical behaviour of boroaluminosilicate geopolymers (BASG) compared to conventional aluminosilicate binders. The use of various types of fibres by the means of reinforcing geopolymers against flexural loads is very common. In this work, fly ash and ground granulated blast furnace slag (GGBS) are utilised as raw materials to generate geopolymer specimens. Different alkaline solutions comprising sodium hydroxide, sodium silicate, and borax are prepared to activate precursors. The sodium silicate solution is substituted with borax by 30?wt% and 70?wt% in order to produce fly ash and slag-based BASG respectively. Steel and polymer fibres are employed in the mixtures for reinforcement. Three-point bending and mini slump tests are conducted for assessing the flexural strength, elastic modulus, toughness, and flow of geopolymer specimens. A pair plotting interpretation is also used in order to illustrate the patterns. The obtained results indicate that the fly ash-based BASG mortar shows superior flexural strength to the GGBS-based BASG mortar. The flexural strength of fly ash-made aluminosilicate geopolymer declines from 7.3?MPa to 6.4?MPa with an increase in the content of steel fibres from 1% to 2%. Inversely, raising the percentage of steel fibres in the fly ash-based BASG mortar caused a slight growth in the flexural strength of specimens. The polypropylene fibres, when added sufficiently, play a significant role in improving the toughness of fly ash-based BASG and slag-based aluminosilicate mixtures, more than 0.8 and 0.7?J surge in the toughness respectively. In addition, the polypropylene and steel fibres perform well in improving the elastic modulus of slag-based BASG and fly ash-based aluminosilicate binders. While keeping the water to binder ratio constant, introducing the steel fibre increased the flow of fly ash-based geopolymers. Nonetheless, the polymer fibres declined the flow of mortars.  相似文献   

20.
Pyrocarbon (PyC) matrices were prepared in two kinds of quartz fiber preforms by chemical vapor infiltration (CVI), and then the fibers were leached by HF. Effects of CNTs on the microstructures and mechanical properties of the quartz fiber reinforced carbon composites and PyC matrices, as well as the interface behaviors of the fiber reinforced composites, were discussed. Randomly oriented CNTs reinforced PyC micro-composites account for the pseudo ISO structure and contribute to the mechanical properties of the PyC matrix. Relative strength between reinforcement and matrix and interface bonding significantly affect the mechanical behaviors of the quartz fiber reinforced pyrocarbon composites: Quartz fiber with low strength and strong interface bonding result in limited strengthening effect on flexural strength of the fiber reinforced composite; low strength unidirectional quartz fiber and weak interface bonding in a much stronger matrix result in limited strengthening effect on tensile strength of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号