首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Hot coke oven gas (COG) with a temperature of about 1050 K was produced from a test unit for coke production, the capacity of which was 80 kg of coal. The COG was introduced into an experimental unit with a tar converter where oxygen and steam were injected. Over 98% of the total carbon in the hot COG was partially oxidized, reformed with steam and converted to hydrogen and CO. About 1 Nm3/h of hydrogen was continuously produced for 5 h in this experiment. The experimental results suggest that three to five times the amount of hydrogen and CO that were present in the original COG could be recovered by this technology, utilizing the heat of the hot COG for the reaction. The feasibility study showed that hydrogen can be produced by this technology at a lower cost and higher efficiency than by the separation of cold COG.  相似文献   

2.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

3.
Hydrogen production from bioethanol reforming in supercritical water   总被引:1,自引:0,他引:1  
Hydrogen production by reforming and oxidative reforming of ethanol in supercritical water (SCW) at the intermediate temperature range of 500-600 °C and pressure of 25 MPa were investigated at different ethanol concentrations or water to ethanol ratios (3, 20 and 30), with the absence and the presence of oxygen (oxygen to ethanol ratio between 0 and 0.156). Hydrogen was the main product accompanied with relatively low amounts of carbon dioxide, methane and carbon monoxide. Some liquid products, such as acetaldehyde and, occasionally, methanol were present. The ethanol conversion and hydrogen yield and selectivity increased substantially as the water to ethanol ratio and the reaction temperature increased. Ethanol was almost completely reformed and mainly converted to hydrogen giving a H2/CO ratio of 2.6 at 550 °C and water to ethanol ratio of 30 without carbon formation. Coke deposition was favored at low water to ethanol ratio, especially at high temperatures (≥550 °C). The hydrogen yield improved as the ethanol was partially oxidized by the oxygen added into the feed at oxygen to ethanol ratios <0.071. It was evidenced that the metal components in Inconel 625 reactor wall reduced by a hydrogen stream acted as a catalyst promoting hydrocarbon reforming as well as water-gas-shift reactions while dehydrogenation of ethanol forming acetaldehyde can proceed homogeneously under the SCW condition. However, at high oxygen to ethanol ratio, the reactor wall was gradually deactivated after being exposed to the oxidant in the feed. The loss of the catalytic activity of the reactor surface was mainly due to the metal oxide formation resulting in reduction of catalytic activity of the reactor wall and reforming of carbon species was no longer promoted.  相似文献   

4.
针对甲醇蒸汽的微通道重整催化反应过程,建立了三维稳态多组分传输反应模型;利用数值模拟分析,分别研究了平行阵列微通道和仿蜂巢分叉微通道在Zn_Cr/CeO2/ZrO2催化剂下的反应情况。通过双速率模型考察这两种流道中操作条件对甲醇蒸汽重整制氢输运规律的影响,发现这两种微通道反应器均可促进甲醇转化率和氢气产率的提高。与常规平行微通道的比较发现,仿蜂巢分叉微通道内反应气流动所需的泵功较小;在相同的加热面积下所能吸收的热量更大,而且更有利于反应器内温度的均匀分布,从而提高甲醇的转化率、减小出口CO的含量。研究结果表明,仿蜂巢分叉微通道结构具有较好的重整制氢综合性能,并可改善氢气产出的品质。  相似文献   

5.
对常温常压下滑动弧等离子体放电分解二甲醚(DME)制氢进行了研究,探讨了进气流量、电极间距、放电电压、电极形状和水/DME摩尔比以及添加的空气量对滑动弧等离子体DME转化制氢的影响。结果表明,当进气流量由43 mL·min-1增加到76 mL·min-1时,DME转化率从58.9%下降至50.6%,H2收率从26.9%下降至19.7%。随着电极间距由2 mm增加到4 mm、放电电压由11.2 kV增加到17.1kV时,DME转化率和H2收率增加,制氢能耗降低。电极最宽处有5mm平滑的竖直部分、上端电极长度50 mm,弧度23o的2#电极对DME放电反应最有利;添加水蒸汽和适量的空气对DME分解制氢反应有利,当水/DME摩尔比为2.3,添加空气的体积分数为25.8%时,DME转化率最大为74.1%,氢气的收率最大为43.4%。  相似文献   

6.
CO2 reforming and the combined CO2 reforming and partial oxidation reaction of selected fuel compounds were studied on a commercial 15 wt% NiO/Al2O3 catalyst and a 0.25 wt% Rh/ZrO2 catalyst at 600–900 °C. Oxygen reduced the energy requirement and catalyst coking. Ethanol was a more suitable starting material than the hydrocarbons.  相似文献   

7.
贾英桂  吴洪达  殷宇 《化工进展》2012,31(2):274-282
总结了乙醇水蒸气重整反应研究中给出的有关反应中间体存在的实验证据,就文献中有关机理的讨论作了较为详细的介绍,综述了乙醇水蒸气重整制氢过程中可能存在的反应路径。指出催化剂的组成、晶格结构、表面酸碱性、氧化还原性等因素对催化反应机理有显著影响,原料水醇比、温度、压力等反应工艺条件也会影响反应产物的选择性和平衡浓度。指出量化计算催化剂表面性质和晶格结构参数,深入研究催化反应机理,是乙醇水蒸气重整制氢的研究趋势。  相似文献   

8.
天然气制氢工艺技术研究进展   总被引:1,自引:0,他引:1  
史云伟  刘瑾 《化工时刊》2009,23(3):59-61
在未来的能源结构中氢能将占有越来越重要的地位。天然气制氢作为最经济的化石资源制氢过程在未来的20a仍然将在氢能领域占据主要地位。综述了国内外天然气制氢的技术工艺研究现状,进展及发展方向。介绍了各工艺的优缺点,现存的问题及各工艺需解决的关键问题。  相似文献   

9.
负载型金属催化剂在乙醇水蒸气重整制氢中的应用   总被引:3,自引:0,他引:3  
系统地阐述了近年来对乙醇水蒸气重整制氢催化剂的研究进展;对影响催化剂性能的因素及对策进行了分析与讨论;展望了乙醇水蒸气制氢催化剂的研究方向.  相似文献   

10.
孙道安  李春迎  张伟  吕剑 《工业催化》2011,19(12):21-26
烃类水蒸汽重整是工业上大规模制氢的主要方法.综述了近十年来国内外烃类水蒸汽重整制氢技术的研究进展,重点从催化剂以及反应工艺方面进行介绍及评述,并指出烃类水蒸汽重整制氢的重点发展方向.  相似文献   

11.
国内外蒸汽转化制氢催化剂及工艺进展   总被引:3,自引:0,他引:3  
本文分别对烃类蒸汽转化制氢技术中涉及的原料、工艺、设备及催化剂等方面的国内外进展进行了讨论,评述了烃类蒸汽转化制氢技术的发展趋势并提出有关建议。  相似文献   

12.
CO2 reforming and partial oxidation of CH4 were investigated on different supported noble metal and Ni catalysts. A detailed thermodynamic analysis was performed for both reactions. The observed reaction behaviour can be predicted by thermodynamics. Product selectivity is catalyst independent, the role of the catalyst is to bring the reactants to approach equilibrium. The partial oxidation is a two-stage process, total oxidation of CH4 is followed by CO2 and H2O reforming of the remaining CH4. A staged addition of O2 to the reactor is tested and recommended. TPSR show that the catalyst surface for CO2 reforming was highly covered with carbonaceous species of four different types; two were identified as reactive intermediates.  相似文献   

13.
闫月君  刘启斌  隋军  金红光 《化工进展》2012,31(7):1468-1476
针对甲醇水蒸气催化重整制氢的应用背景,综述了甲醇水蒸气重整制氢的反应机理和动力学,对用于该反应的催化剂进行了总结分类,阐述了催化剂制备和反应阶段相关因素对催化剂特性的影响。在此基础上,指出甲醇水蒸气重整制氢技术研究与应用存在的问题与瓶颈,并对两种创新的研究--太阳能驱动的甲醇水蒸气重整制氢技术和甲醇重整制氢微通道反应器的开发技术进行了总结展望。  相似文献   

14.
二甲醚的生产技术及进展   总被引:2,自引:0,他引:2  
介绍了二甲醚(DME)的各种生产方法及技术进展情况,并对其工艺特点进行了分析比较。  相似文献   

15.
The combined partial oxidation and CO2 reforming of methane to synthesis gas was investigated over the reduced Co/MgO, Co/CaO, and Co/SiO2 catalysts. Only Co/MgO has proved to be a highly efficient and stable catalyst. It provided about 94–95% yields to H2 and CO at the high space velocity of 105000 mlg–1h–1 and for feed ratios CH4/CO2/O2=4/2/1, without any deactivation for a period of study of 110 h. In contrast, the reduced Co/CaO and Co/SiO2 provided no activity for the formation of H2 and CO. The structure and reducibility of the calcined catalysts were examined using X-ray diffraction and temperature-programmed reduction, respectively. A solid solution of CoO and MgO, which was difficult to reduce, was identified in the 800°C calcined MgO-supported catalyst. The strong interactions induced by the formation of the solid solution are responsible for its superior activity in the combined reaction. The effects of reaction temperature, space velocity, and O2/CO2 ratio in the feed gases (while keeping the C/O ratio constant at 1/1) were investigated over the Co/MgO catalyst. The H2/CO ratio in the product of the combined reaction increased with increasing O2/CO2 ratio in the feed.  相似文献   

16.
刘军  刘妍  于希水 《工业催化》2006,14(2):21-23
介绍了Z417/Z418型转化催化剂在焦化富气制氢装置中的使用情况。结果表明,该催化剂对原料的适应性较强,使用空速高,转化率高, 床层阻力降小, 抗蒸汽水合氧化能力、抗毒物能力和抗积炭能力较强, 催化剂可还原再生, 烧炭速率快。  相似文献   

17.
孙道安  李春迎  张伟  吕剑 《化工进展》2012,31(4):801-806
  烃水蒸气重整是目前获取氢能源的重要方法之一,而甲烷、汽油和柴油作为典型烃类原料可满足于不同规模氢能源的需求。本文重点从催化剂、反应工艺和反应机理及动力学三个方面对甲烷、汽油和柴油蒸汽重整制氢进行介绍和评述。指出甲烷重整制氢镍基催化剂的改性和反应器设计以及反应条件的优化是其必然的发展趋势,汽油和柴油重整制氢催化剂未来设计必须具备高抗硫性和抗积炭性。此外,需加强甲烷、汽油和柴油蒸气重整制氢的机理和动力学研究。  相似文献   

18.
Indirect partial oxidation (IPOX) of a 75:25 propane:n-butane mixture, which was used as a model for LPG, was studied over the bimetallic 0.2 wt%Pt–15 wt%Ni/δ-Al2O3 catalyst in 623–743 K temperature range. The effects of steam to carbon ratio (S/C), carbon to oxygen ratio(C/O2) and residence time (W/F (g cat-h/mol LPG)) on the hydrogen production activity, selectivity and product distribution were studied in detail. The results are compared with the results obtained in the IPOX of pure propane. An Increasing Temperature Program (ITP) was applied during all experiments and the results showed that the presence of n-butane in the feed enhances hydrogen production activity and selectivity. Considering the well established distribution network of LPG and the superior performance of the bimetallic Pt–Ni catalyst in the IPOX of LPG, Pt–Ni system seems a very promising catalyst alternative to be used in commercial fuel processors.  相似文献   

19.
甘油作为生物柴油的副产物,当前的产能严重过剩。甘油制氢,尤其是通过水相重整(APR)制取可以供燃料电池直接使用的高品质氢气,是提高甘油附加值、降低生物柴油成本的重要途径和手段。本文简述了当前生物柴油及其副产物甘油的生产,阐述了甘油的水相重整制氢反应,详细介绍了甘油水相重整制氢反应的热力学和动力学影响因素。分别从催化剂的贵金属活性组分、非贵金属活性组分和载体等三方面对甘油水相重整制氢反应进行了详细的综述,最后提出了双金属催化剂可能具有优异的催化甘油水相重整制氢性能。  相似文献   

20.
Dry reforming, partial oxidation and combined reforming of methane (combination of partial oxidation and dry reforming) to synthesis gas over nickel catalysts supported on nanocrystalline magnesium oxide with various nickel loadings have been studied. Among the catalysts evaluated, catalyst with 15 wt.% nickel content revealed the most active catalytic performance toward dry reforming, partial oxidation and combined reforming reactions. In addition, catalyst with 5 wt.% nickel loading was employed in long term stability test and has shown stable catalytic performance up to 50 h time on stream without any decrease in methane conversion in these three processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号