首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
We report the first fluorine doping of lead magnesium niobate in the PbMg (1 + x)/3Nb(2 ? x)/3O3 ? x F x system in a wide composition range, x = 0.025 to 0.625. The fluorine content of the samples is shown to be substantially lower than the intended one because of the fluorine volatilization in the form of HF during synthesis and sintering in air. The ceramics consist of magnesium and lead oxides undetectable by x-ray diffraction, and a perovskite phase whose composition can be represented by the formula PbMg(1 + m)/3Nb(2 ? m)/3O3 ? m F m , where the fluorine content after sintering is m ≤ 0.12. The PbO and MgO contents of the ceramics depend on the starting mixture composition (x) and heat-treatment conditions (hydrogen fluoride and lead oxide volatilization). As a result of the low fluorine content, the diffraction patterns of the samples show no superlattice reflections, and their lattice parameter varies insignificantly with x. Data are presented on the temperaturedependent dielectric permittivity of ceramic samples sintered and annealed under different conditions.  相似文献   

2.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

3.
The multicomponent refractory oxide system Zn2(TiaSnb)1 ? x ZrxO4 (a + b = 1; a: b = 1: 5, 1: 4, 1: 3, 1: 2, 1: 1, 1: 0, 2: 1, 3: 1, 4: 1; x = 0?1.0; Δx = 0.05) has been studied by x-ray diffraction, using samples prepared by melting appropriate oxide mixtures in a low-temperature hydrogen-oxygen plasma. Two phases, both with wide homogeneity ranges, have been identified: α-phase, with a cubic inverse spinel structure, and β-phase, with a tetragonal spinel structure. The phase boundaries in the system have been determined. Structural data are presented for about 100 solid solutions of different compositions.  相似文献   

4.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

5.
(1 ? x)PbMg1/3Nb2/3O3 · xPbZrO3 (1 ? x)PMN · xPZ) solid solutions have been synthesized at a pressure of 5 GPa and temperatures from 1300 to 1700 K, and their structural and dielectric properties have been studied. The composition dependences of the average unit-cell parameter and dielectric permittivity for the solid solutions indicate that the PMN-PZ system has a morphotropic phase boundary near x = 0.65. The solid solutions have a cubic structure for x < 0.65, a rhombohedral structure in the range 0.65 < x < 0.9, and an orthorhombic structure (similar to that of PbZrO3) for x > 0.9. The temperature and frequency dependences of dielectric permittivity suggest that the (1 ? x)PMN · xPZ samples with x < 0.65 consist of two ferroelectric phases: a relaxor with antipolar dipole order and a normal ferroelectric with a diffuse phase transition. The effect of annealing temperature on the ferroelectric state of the samples with x < 0.65 is examined. In the composition range 0.65 < x < 0.9, the samples have normal ferroelectric properties, independent of annealing temperature.  相似文献   

6.
Manganese ferrite (MnFe2O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10?δ(CuTl-1223) superconducting phase were synthesized by sol-gel and solid-state reaction methods, respectively. Different contents of MnFe2O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (MnFe2O4)x/CuTl-1223; x =? 0~2.0 wt% nanoparticles-superconductor composites. Complex electric modulus spectroscopy measurements of (MnFe2O4)x/CuTl-1223 composites were carried out at different test frequencies from 20 Hz to 10 MHz and at different operating temperatures from 78 to 253 K to analyze and interpret the dynamical aspects of electrical transport phenomena (i.e., such as carrier hopping rate, conductivity, and blocking factor). The complex electric modulus spectra showed the effects of both grains and grain-boundaries on electrical properties. The capacitance of grain-boundaries was found higher than that of grains. The capacitive behavior of grains was increased and that of grain-boundaries was decreased with increasing operating temperature for all these samples. Blocking factor of these composites was increased with increasing contents of MnFe2O4 nanoparticles. Shifting of peaks in imaginary part of modulus spectra towards lower frequency with increasing contents of these nanoparticles showed non-Debye type relaxation phenomenon in the material.  相似文献   

7.
The polycrystalline Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1 MxO y , with M = Zr (x = 0.0, 0.02, 0.04), were synthesized by solid-state reaction method and studied by X-ray diffraction analysis (XRD), scanning electron microscopy equipped with energy dispersive of X-ray analysis (SEM/EDX) and resistivity versus temperature measurements. The influence of the Zr addition on the Tc and microstructure properties of the superconducting compounds has been studied. SEM observations show whiskers grains randomly distributed and microstructural change due to the addition of Zr. The ZrO2 was incorporated into the crystalline structure of BSCCO system in all samples. The crystallographic structure remains in a tetragonal form where a= bc. Generally, all samples exhibit semiconductor behaviour above \(T_{\mathrm {c}}^{\text {onset}}\). The onset critical temperature \(T_{\mathrm {c}}^{\text {onset}}\) increases up to 86 with x = 0.02. There is an enhancement in the critical temperature for doped samples as compared with pure Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1O y .Changes in superconducting properties of ZrO2 nanoparticle added Bi-2212 system were discussed.  相似文献   

8.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

9.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

10.
Polycrystalline samples of BaTi1?xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.  相似文献   

11.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

12.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

13.
We have studied the electric-field effect on crystallization processes in the Li3PO4-Li4GeO4-Li2MoO4-LiF system. In zero field, Li3+x P1?x Ge x O4 (x = 0.31) crystals were grown on the cathode under the conditions of this study. At low applied voltages (≤ 0.5 V), we obtained Li2MoO4, Li2GeO3, and Li1.3Mo3O8. In the range V = 0.5–1 V, crystals of Li3+x P1?x Ge x O4 solid solutions with x = 0.17, 0.25, 0.28, 0.29, and 0.36 were obtained. An applied electric field was shown to reduce the melting temperature of the starting mixtures and the crystallization onset temperature.  相似文献   

14.
BiY2Cr x Fe5?x O12 (x = 0, 0.05, 0.1, 0.2, 0.3) nanocrystals were synthesized by using a sol-gel method. Samples were characterized by the powder X-ray diffraction (XRD), the thermal gravity analysis (TGA) and the differential thermal analysis (DTA), the vibrating sample magnetometer(VSM) and Mössbauer spectrums. The average sizes of the particles were determined by the Scherrer’s formula. The special Ms and Mössbauer spectra of BiY2Cr x Fe5?x O12 nanocrystals are researched at room temperature. It is seen that the special Mss of samples are initially increased with increasing Cr3+ content (x < 0.1), and decreased with increasing content of Cr3+ ions (x > 0.1).  相似文献   

15.
Single-phase samples of Mn(Cr1?x Al x )2O4 (x = 0 – 0.30) with cubic spinel structure were prepared and the lattice constant is found to decrease from a = 8.4396 Å for x = 0 to a = 8.3801 Å for x = 0.30. The substitution of Al at Cr site is confirmed from the blue shift of Raman modes. Magnetization measurements and analysis show all the prepared samples exhibit ferrimagnetic transition with transition temperature in the range of 46 K for x = 0 to 33 K for x = 0.30. The saturation magnetization (M s ) and the estimated anisotropy constant (K) show an anomalous behavior up to x = 0.10 and beyond that they decrease monotonously. They are explained by considering different site preferences of Al 3+ ions as the doping concentration is increased. The theoretical and experimental effective magnetic moment of the samples is found to be comparable and it decreases with increase in Al concentration.  相似文献   

16.
The possible difference in the properties upon doping the Sr2CaCu2O6 superconducting or blocking layers with Fe and Eu respectively was investigated in this work. The homogeneous Sr2?yEuyCaCu2O6+δ and Sr2CaCu2?xFexO6+δ (y = 0, 0.1, 0.5, x = 0, 0.05) compounds were produced by a high-pressure synthesis route. Judging by the magnetic susceptibility measurements, all samples exhibit a superconductivity transition and the Eu/Fe concentration dependencies on the diamagnetic moment and average Tc have been constructed using the experimental data. As a result, an unusual behavior of the Tc value was observed for the samples with doped Eu: a fivefold reduction in the europium concentration in the sample does not give a noticeable effect on the transition temperature value while the diamagnetic signal becomes more stronger. Complex superconducting dome was found for Eu-doped material: 0.1 ≤ y ≤ 0.5 region Tc vs. concentration data were approximated by inverted parabola-like curve with a maximum at y = 0.3. Difference in properties of the Eu and Fe-doped samples was also found in the behavior of the hysteresis loops showed the opposite orientations.  相似文献   

17.
The MgB2 superconductor was doped with electroluminescent Y2O3:Eu, to synthesise a superconducting metamaterial. The temperature dependence of the resistivity of the superconductor indicates that the critical temperature (T C) of samples decreases when increasing the amount of doped Y 2 O 3 nanorods, due to impurity (Y 2 O 3, MgO and YB 4). However, the T C of the samples increase with increasing amount of doped Y 2 O 3:Eu 3+ nanorods, which are opposite to doped Y 2 O 3 nanorods. Moreover, the transition temperature of the sample doped with 8 wt % Y 2 O 3:Eu 3+nanorods is higher than those of doped and pure MgB 2. The T C of the sample doped with 8 wt % Y 2 O 3:Eu 3+ nanorods is 1.15 K higher than that of the sample doped with 8 wt % Y 2 O 3. The T C of sample doped with 8 wt% Y 2 O 3:Eu 3+ is 0.4 K higher than that of pure MgB 2. Results indicate that doping electroluminescent materials into MgB 2 increases the transition temperature; this novel strategy may also be applicable to other superconductors.  相似文献   

18.
Ceramic samples of solid solutions (1 ? x) PbNb2/3Mg1/3O3 · xPbTiO3 (0 ≤ x ≤ 1.0, Δx = 0.0025–0.05) are prepared by the columbite method. A detailed x?T phase diagram of the system is constructed (isothermal join at 25°C), and dielectric, piezoelectric, and elastic properties are investigated. It is established that the region of the morphotropic phase transition is positioned in the range 0.28 < x ≤ 0.43 and consists of a series of narrower regions. Inside one phase (cubic, rhombohedral, tetragonal), regions are found in which a qualitative and quantitative difference in structural and electrical parameters is observed. An interpretation of the observed effects in the context of the defect structure of the objects is suggested.  相似文献   

19.
Perovskite type (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 lead-free ceramics were prepared via a conventional solid-state reaction method. The phase structure, dielectric, ferroelectric properties and complex impedance were investigated in detail. XRD and dielectric measurements determined that single orthorhombic phase displayed in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 at room temperature. With the introduction of Bi2O3/CuO, the phase structure exhibited the mixture of orthorhombic and tetragonal phases, and then turned to single tetragonal phase. In contrast to the sharp dielectric transition of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics, a broad dielectric peak coupled with a slight decrease in Curie temperature was observed in (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 ceramics with increasing x. The observed diffuse phase transition behavior was further confirmed by a couple of measurements with polarization loops and polarization current density curves. The structural and the composition fluctuations induced by ions doping should be responsible for the diffuse phase transition behavior. Furthermore, physical mechanisms of the conduction and relaxation processes were revealed by using impedance spectroscopy analyses. It was concluded that the conduction and relaxation processes were thermally activated, which was closely linked with the singly and doubly ionized oxygen vacancies.  相似文献   

20.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号