首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

2.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

3.
Single-phase samples of Mn(Cr1?x Al x )2O4 (x = 0 – 0.30) with cubic spinel structure were prepared and the lattice constant is found to decrease from a = 8.4396 Å for x = 0 to a = 8.3801 Å for x = 0.30. The substitution of Al at Cr site is confirmed from the blue shift of Raman modes. Magnetization measurements and analysis show all the prepared samples exhibit ferrimagnetic transition with transition temperature in the range of 46 K for x = 0 to 33 K for x = 0.30. The saturation magnetization (M s ) and the estimated anisotropy constant (K) show an anomalous behavior up to x = 0.10 and beyond that they decrease monotonously. They are explained by considering different site preferences of Al 3+ ions as the doping concentration is increased. The theoretical and experimental effective magnetic moment of the samples is found to be comparable and it decreases with increase in Al concentration.  相似文献   

4.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

5.
Polycrystalline samples of BaTi1?xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.  相似文献   

6.
MgCo2O4 samples were synthesized by inverse co-precipitation method. The formation of a single-phase spinel structure was confirmed by X-ray diffraction measurements and Fourier-transform infrared spectroscopy. The samples crystallized in a face-centered cubic structure with Fd-3m space group as revealed from the Rietveld refinement of X-ray diffraction data. Magnetic measurements carried out in a broad temperature range of 5–300 K showed antiferromagnetic to paramagnetic phase transition (Neel temperature) observed at 101 K. Magnetic susceptibility data fitted using the Curie Weiss law and effective Bohr magnetic moment (μeff) for Co atoms was determined. Calculated μeff comes out to be 3.05 μB. These results were correlated to the spin states of Co3+ atoms. A small hysteresis in the field-dependent magnetization MH loop taken at 5 K indicates the existence of weak ferromagnetism in this system. The electrical resistivity measurement in the temperature range 77–750 K displayed the semiconducting-like behavior for this system.  相似文献   

7.
We have studied the magnetic properties of the new compound Er2Mn2/3Re4/3O7 prepared by reacting Er3ReO8, ReO2, MnO, and metallic Re at 1020°C in silica tubes sealed off under vacuum. The compound is shown to have the zirkelite structure with hexagonal cell parameters a = 7.3174(6) Å and c = 17.365(1) Å (sp. gr. P31211, Z = 6). Magnetization data obtained in the range 2–300 K demonstrate that, above ~150 K, its magnetic susceptibility exhibits Curie-Weiss behavior with an effective magnetic moment of 9.50μB. Dynamic magnetic susceptibility measurements point to spin-glass behavior of this compound at low temperatures.  相似文献   

8.
La0.45Dy0.05Ca0.5Mn0.9V0.1O3, prepared by solid-state route, was characterized using x-ray diffraction at room temperature. The Rietveld refinement shows that the sample crystallizes in orthorhombic structure with Pbnm space group. A secondary phase LaVO4 has been also detected. The temperature dependence of the magnetization was investigated to determine the characteristics of the magnetic transition. The sample exhibits a paramagnetic-ferromagnetic transition (PM-FM) at T C = 81 ± 0.7 K when temperature decreases. The study of the inverse of susceptibility reveals the presence of ferromagnetic clusters in the paramagnetic region. A metamagnetic transition was observed from the M(H) curves and the magnetic entropy change was calculated from magnetization curves at different temperatures in order to evaluate the magnetocaloric effect.  相似文献   

9.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

10.
We investigated the magnetic properties of a geometrically frustrated magnet of ZnFe2O4 nanoparticles by carrying out the comprehensive measurements of dc magnetization and ac susceptibility. Spin glass is confirmed to occur in this weakly Fe(Zn)-ionic-inversed sample. The common characteristics of spin glass including the aging, the memory, and the rejuvenation effects were observed. By using the critical-power law to study the spin dynamics, the spin-glass transition temperature Tg is obtained to be 18 K and the dynamic exponent zν is 8.0. The weak exchange interaction disorder introduced by the ferrimagnetic JAB interaction, together with the weak nonmagnetic dilute disorder induced by the ionic inversion, is responsible for the formation of spin glass in the ZnFe2O4 nanoparticles.  相似文献   

11.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

12.
Single-phase ceramic samples of La1–xNdxInO3 (0.007 ≤ x ≤ 0.05), LaIn0.99M0.01O3, and La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+) solid solutions have been prepared by solid-state reactions, and their crystal structure, magnetic field dependences of their specific magnetization at 5 and 300 K, and temperature dependences of their molar magnetic susceptibility have been studied. It has been shown that the 300-K specific magnetization of the La1–xNdxInO3 (x = 0.02, 0.05), La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+), and LaIn0.99Mn0.01O3 solid solutions increases linearly with increasing magnetic field strength up to 14 T and that the magnitude of the 300-K specific magnetization of the La0.993Nd0.007InO3 and LaIn0.99Cr0.01O3 solid solutions increases linearly, but they have diamagnetic magnetization. At a temperature of 5 K, the magnetization of all the indates studied here increases nonlinearly with increasing magnetic field strength, gradually approaching magnetic saturation, without, however, reaching it in a magnetic field of 14 T. In the temperature range where the Curie–Weiss law is obeyed (5–30 K), the effective magnetic moments obtained for the Nd3+ ion (\({\mu _{effN{d^{3 + }}}}\)) in the La1–xNdxInO3 solid solutions with x = 0.007, 0.02, and 0.05 are 2.95μB, 3.09μB, and 2.75μB, respectively, which is well below the theoretical value \({\mu _{effN{d^{3 + }}}}\)= 3.62μB. The effective magnetic moments of the Cr3+ and Mn3+ ions in the LaIn0.99Cr0.01O3 and LaIn0.99Mn0.01O3 solid solutions are 3.87μB and 5.11μB, respectively, and differ only slightly from the theoretical values \({\mu _{effC{r^{3 + }}}}\)= 3.87μB and \({\mu _{effM{n^{3 + }}}}\)= 4.9μB.  相似文献   

13.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

14.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

15.
Novel green-emitting piezoelectric ceramics of SrBi4?x Er x Ti4O15 (SBT-xEr) were prepared. Strong up-conversion with bright green (524 and 548 nm) and a relatively weak red (660 nm) emission bands were obtained under 980 nm excitation at room temperature, which is attributed to the intra 4f–4f electronic transition of (2H11/2, 4S3/2)–4I15/2 and the transition from 4F9/2 to 4I15/2 of Er3+ ions, respectively. Simultaneously, Er3+ doping promotes the electrical properties. At 0.8 mol%Er, the optimal electric properties with high Curie temperature of T c?~527?°C, large remanent polarization of 2P r?~14.92 μC/cm2 and piezoelectric constant of d 33?~17 pC/N was achieved. As a multifunctional material, Er3+ doped SBT showed a great potential to be used in 3D-display, bio-imaging, solid state laser and optical temperature sensor.  相似文献   

16.
The Fadeev model is used for describing the recently discovered toroidal spin ordering in piezoelectric and ferrimagnetic GaFeO3 and piezo- and magnetoelectric Cr2O3 and BiFeO3. A stable toroidal solution of the Faddeev model with the topological charge Q= 1 in an external homogeneous magnetic field was obtained using the trial function method. The energy of a toroid as a function of its radius (R) was determined at various values of the external magnetic field (H). It was shown that the energy minimum is shifted toward smaller R’s with an increase in H. At a critical field value, the torus collapses so that the local spin structure disappears. It is suggested to use magnetic field for controlling the torus size in multiferroics, promising materials of spintronics.  相似文献   

17.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

18.
As part of a search for new spintronic materials, we have studied the magnetic properties of the CuGa0.94Mn0.06Te2 chalcopyrite solid solution in the range 2–400 K in weak and strong magnetic fields. Magnetization isotherms, σ(H), were obtained in magnetic fields of up to 3980 kA/m. σ(T) data were collected in two ways: the sample was cooled in a magnetic field or in zero field. The experimental data were analyzed by fitting to the Langevin function. The data are adequately represented by this relation in the case when the magnetic moment of the clusters is μcl = 23.4μB and the concentrations of magnetic clusters and noninteracting Mn2+ ions are n cl = 2.4 × 1025 m?3 and n pm = 5.7 × 1025 m?3, respectively. The calculated average cluster size is d cl = 33 Å, the number of Mn2+ ions per cluster is z = 21 atoms per cluster, and the magnetic moment per Mn2+ ion in the clusters is μMn = 1.1μB. This μMn value is far below the theoretical magnetic moment of the Mn2+ ion in the electronic configuration d 5(5.9μB), suggesting antiferromagnetic exchange interaction.  相似文献   

19.
We have inspected the magnetic properties of polycrystalline La0.4Bi0.1Ca0.5MnO3 using electron spin resonance (ESR) in the temperature range 150–280 K. The temperature dependence of magnetization indicates that the Curie temperature is T C= 225 K. ESR spectra revealed that the sample is not completely paramagnetic above its Curie temperature through the presence of ferromagnetic interactions in the temperature range 225–270 K which can be attributed to the presence of Griffiths phase in this temperature range. The sample becomes completely paramagnetic above 270 K. The presence of Griffiths phase can be attributed to the disorder induced by the 6 s 2 lone pair electrons of Bi3+ ions.  相似文献   

20.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号