首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

2.
Single-phase ceramic samples of La1–xNdxInO3 (0.007 ≤ x ≤ 0.05), LaIn0.99M0.01O3, and La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+) solid solutions have been prepared by solid-state reactions, and their crystal structure, magnetic field dependences of their specific magnetization at 5 and 300 K, and temperature dependences of their molar magnetic susceptibility have been studied. It has been shown that the 300-K specific magnetization of the La1–xNdxInO3 (x = 0.02, 0.05), La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+), and LaIn0.99Mn0.01O3 solid solutions increases linearly with increasing magnetic field strength up to 14 T and that the magnitude of the 300-K specific magnetization of the La0.993Nd0.007InO3 and LaIn0.99Cr0.01O3 solid solutions increases linearly, but they have diamagnetic magnetization. At a temperature of 5 K, the magnetization of all the indates studied here increases nonlinearly with increasing magnetic field strength, gradually approaching magnetic saturation, without, however, reaching it in a magnetic field of 14 T. In the temperature range where the Curie–Weiss law is obeyed (5–30 K), the effective magnetic moments obtained for the Nd3+ ion (\({\mu _{effN{d^{3 + }}}}\)) in the La1–xNdxInO3 solid solutions with x = 0.007, 0.02, and 0.05 are 2.95μB, 3.09μB, and 2.75μB, respectively, which is well below the theoretical value \({\mu _{effN{d^{3 + }}}}\)= 3.62μB. The effective magnetic moments of the Cr3+ and Mn3+ ions in the LaIn0.99Cr0.01O3 and LaIn0.99Mn0.01O3 solid solutions are 3.87μB and 5.11μB, respectively, and differ only slightly from the theoretical values \({\mu _{effC{r^{3 + }}}}\)= 3.87μB and \({\mu _{effM{n^{3 + }}}}\)= 4.9μB.  相似文献   

3.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

4.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

5.
We have developed processes for the synthesis of Ni0.75Zn0.25Fe2–xLnxO4 ferrite solid solutions with the spinel structure and investigated the effect of the rare-earth elements Nd, Gd, Yb, and Lu on the chemical composition, extent, lattice parameters, and magnetic properties of the solid solutions. The results demonstrate that rare-earth solubility in the parent spinel reaches ≈2.5 at %, which leads to changes in the magnetic characteristics of the material, in particular in its saturation magnetization Ms, TC, and coercive force Hc.  相似文献   

6.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

7.
In this work, we are going to show the method based on mean-field scaling for the Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025 O3 sample, where from scaling of experimental magnetization data, the mean-field exchange parameter λ and the f function of the equation of state \(M(T,H)=B_{S} [\frac {\left ({H+H_{\text {ex}}} \right )}{T}]\) are directly determined. The scaling approach allows finding the dependence of H ex on T or higher powers of M, which determine the order of the phase transition. Quantum spin number has been determined. In this study, we use \(\left | {\Delta S_{M} (T)} \right |\) obtained from isothermal magnetization measurements; we compare this result to mean-field theory fittings from a novel scaling method through the use of theoretical results S, g, and λ. The obtained results by mean-field theory are suitable and in good agreement with the classical Maxwell relation.  相似文献   

8.
BiY2Cr x Fe5?x O12 (x = 0, 0.05, 0.1, 0.2, 0.3) nanocrystals were synthesized by using a sol-gel method. Samples were characterized by the powder X-ray diffraction (XRD), the thermal gravity analysis (TGA) and the differential thermal analysis (DTA), the vibrating sample magnetometer(VSM) and Mössbauer spectrums. The average sizes of the particles were determined by the Scherrer’s formula. The special Ms and Mössbauer spectra of BiY2Cr x Fe5?x O12 nanocrystals are researched at room temperature. It is seen that the special Mss of samples are initially increased with increasing Cr3+ content (x < 0.1), and decreased with increasing content of Cr3+ ions (x > 0.1).  相似文献   

9.
Sr1?x Nd x TiO3 (x?=?0.08–0.14) ceramics were prepared by conventional solid-state methods. The analysis of crystal structure suggested Sr1?x Nd x TiO3 ceramics appeared to form tetragonal perovskite structure. The relationship between charge compensation mechanism, microstructure feature and microwave dielectric properties were investigated. Trivalent Nd3+ substituting Sr2+ could effectively decrease oxygen vacancies. This reduction and relative density were critical to improve Q?×?f values of Sr1?x Nd x TiO3 ceramics. For ε r values, incorporation of Nd could restrain the rattling of Ti4+ cations and led to the reduction of dielectric constant. The τ f values were strongly influenced by tilting of oxygen octahedral. The τ f values decreased from 883 to 650 ppm/°C with x increasing from 0.08 to 0.14. A better microwave dielectric property was achieved for composition Sr0.92Nd0.08TiO3 at 1460 °C: ε r ?=?160, Q?×?f?=?6602 GHz, τ f ?=?883 ppm/°C.  相似文献   

10.
NASICON-type materials with the compositions Na3V2–xAlx(PO4)3, Na3V2 - xFex(PO4)3, Na3 + xV2–xNix(PO4)3, and Na3V2 - xCrx(PO4)3 (x = 0, 0.03, 0.05, and 0.1) have been prepared and characterized by X-ray diffraction analysis, electron microscopy, and impedance spectroscopy. The results demonstrate that the highest electrical conductivity among the samples studied is offered by the material doped with 5% Fe: Na3V1.9Fe0.1(PO4)3. The activation energy for low-temperature conduction in the doped materials decreases from 84 ± 2 to 54 ± 1 kJ/mol and that for high-temperature conduction is ~33 kJ/mol. The discharge capacity of Na3V1.9Fe0.1(PO4)3/C under typical working conditions of cathodes of sodium ion batteries has been shown to exceed that of Na3V2(PO4)3/C. The capacity of the more porous material prepared by the Pechini process (Na3V1.9Fe0.1(PO4)3/C-{II}) approaches the theoretical one at a low charge–discharge rate and retains its high level as the charge rate is raised (its discharge capacity was 117.6, 108.8, and 82.6 mAh/g at a discharge rate of 0.1C, 2C, and 8C, respectively).  相似文献   

11.
Doped topological insulators (TI) Bi2?x Nd x Se3 single crystals were prepared by the self-flux method. The phase structure, magnetic properties, and electrical transport properties of the samples were studied. The X-ray diffraction (XRD) patterns of the sample indicate an incorporation of Nd into the Bi2Se3, and the crystal can be easily cleaved with silvery surface. The Bi2?x Nd x Se3 sample shows a giant magnetoresistance (MR) with different magnetic field. The positive magnetoresistance (MR) can reach 190 % at the field of 9 Tesla when the field is perpendicular to ab-plane of the crystal. In addition, at low magnetic fields, the MR exhibits a weak antilocalization (WAL) cusp.  相似文献   

12.
We investigate the effects of iron content on the upper critical field (H c2) and the activation energy U(T) in thermally activated flux flow in Fe x Se0.5Te0.5 near the superconducting transition temperature T c . The variations in H c2(T) with temperature are analyzed using Ginzburg-Landau (GL), Werthamer-Helfand-Hohenberg (WHH) models along with the empirical relation (ER). The obtained values of H c2(0) depend strongly on the model and the criteria used to determine the transition temperature. However, the general trend is that that H c2(0) increases with the increasing Fe content. The activation energy U(T) is maximum for x =? 1 and rapidly suppressed by excess or deficiency of iron. The low values of U(T) (~10 meV) reflect the low vortex-pinning nature (due to defects, vacancies, etc.) in the Fe x Se0.5Te0.5 superconductor.  相似文献   

13.
Single-phase samples of Mn(Cr1?x Al x )2O4 (x = 0 – 0.30) with cubic spinel structure were prepared and the lattice constant is found to decrease from a = 8.4396 Å for x = 0 to a = 8.3801 Å for x = 0.30. The substitution of Al at Cr site is confirmed from the blue shift of Raman modes. Magnetization measurements and analysis show all the prepared samples exhibit ferrimagnetic transition with transition temperature in the range of 46 K for x = 0 to 33 K for x = 0.30. The saturation magnetization (M s ) and the estimated anisotropy constant (K) show an anomalous behavior up to x = 0.10 and beyond that they decrease monotonously. They are explained by considering different site preferences of Al 3+ ions as the doping concentration is increased. The theoretical and experimental effective magnetic moment of the samples is found to be comparable and it decreases with increase in Al concentration.  相似文献   

14.
Nanopowders of La 1?x Bi x Co0.6Fe0.4O3 (x = 0, 0.1, 0.2) and La 1?2x Bi x Sr x Co0.6Fe0.4O3 (x = 0.1) multinary perovskites were synthesized by citrate sol–gel autocombustion method. Crystalline phase and the lattice parameters were obtained from X-ray diffraction pattern. The XRD result shows that all compounds have rhombhohedral crystal structure with \(\bar {\mathbf {R}\mathbf {3}}\)c space group and Bi (x = 0.2) have the presence of secondary peaks. Crystallite size, dislocation density, specific area and strain were calculated from XRD. The elemental composition and micrographs of grain were obtained from EDAX (energy dispersive X-ray analysis) and SEM (scanning electron microscopy), with an average grain size below 400 nm. Surface morphological studies using XPS (X-ray photoelectron spectroscopy) were used to find out the chemical states and surface proportion of oxygen present in samples. Finally, using the vibrating sample magnetometer the room temperature magnetic behaviour of compounds was studied and it was observed that the ferromagnetic behaviour of LaCo0.6Fe0.4O3 was reduced by Bi and Sr doping.  相似文献   

15.
The superconducting properties of Nb2PdS5 superconductor have been investigated with Ni doping at Pd site All the bulk polycrystalline Nb2Pd1?xNix S 5 (0 = x ≤ 0.10) samples are crystallized in singlephase monoclinic structure. The electrical resistivity and magnetic measurements of Nb2Pd1?xNix S 5 (0 = x ≤ 0.15) were carried out to study the variation of superconducting critical parameters with Ni doping. Superconductivity in Nb2PdS5 sample completely disappears for x ≥ 0.15. We observed that the ratio of upper critical field to transition temperature decreases with increasing Ni concentration. Also, the magnetization study of Nb2Pd1?xNix S 5 (0 = x ≤ 0.15) samples shows similar superconducting behaviour. In summary, the superconductivity in Nb2PdS5 sample is slightly varying with partial doping of Ni at Pd site in Nb2PdS5 superconductor.  相似文献   

16.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

17.
Stable BiCl3-containing solutions of phosphorus oxychloride, activated with UO 2 2+ and Nd3+ ions, can be prepared only in the presence of another Lewis acid MCl x . The electronic absorption spectra of the liquids prepared and the decay times of the Nd3+ luminescence are characteristic of individual solutions based on POCl3-MCl x . The radiation-chemical yield of Nd3+ in the excited state 4 F 3/2 in POCl3-BiCl3-MCl x -235UO 2 2+ -Nd3+ solutions upon homogeneous excitation with uranium α-particles is lower than in POCl3-MCl x -235UO 2 2+ -Nd3+ solutions at comparable component concentrations. Apparently, Bi3+ in solutions based on the POCl3-BiCl3-MCl x system is not incorporated in neodymium- and/or uranyl-containing complexes and remains in the matrix.  相似文献   

18.
Polycrystalline samples of BaTi1?xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.  相似文献   

19.
Cu–Al substituted Co ferrite nanopowders, Co1?x Cu x Fe2?x Al x O4 (0.0 ≤ x ≤ 0.8) were synthesized by the co-precipitation method. The effect of Cu–Al substitution on the structural and magnetic properties have been investigated. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu–Al substitution and its impact on particle size, magnetic properties such as M s and H c . Cu–Al substitution occurs and produce a secondary phase, α-Fe 2 O 3. The crystallite size of the powder calcined at 800 °C was in the range of 19–26 nm. The lattice parameter decreases with increasing Cu–Al content. The nanostructural features were examined by FESEM images. Infrared absorption (IR) spectra shows two vibrational bands; at around 600 (v 1) and 400 cm ?1 (v 2). They are attributed to the tetrahedral and octahedral group complexes of the spinel lattice, respectively. It was found that the physical and magnetic properties have changed with Cu–Al contents. The saturation magnetization decreases with the increase in Cu–Al substitution. The reduction of coercive force, saturation magnetization and magnetic moments are may be due to dilution of the magnetic interaction.  相似文献   

20.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号