首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high incidence of allelic imbalance on the long arm of chromosome 16 in breast cancer suggests its involvement in the development and progression of the tumor. Several loss of heterozygosity (LOH) studies have led to the assignment of commonly deleted regions on 16q where tumor suppressor genes may be located. The most recurrent LOH regions have been 16q22.1 and 16q22.4-qter. The aim of this study was to gain further insight into the occurrence of one or multiple "smallest regions of overlap" on 16q in a new series of breast carcinomas. Hence, a detailed allelic imbalance map was constructed for 46 sporadic breast carcinomas, using 11 polymorphic microsatellite markers located on chromosome 16. Allelic imbalance of one or more markers on 16q was shown by 30 of the 46 tumors (65%). Among these 30 carcinomas, LOH on the long arm of chromosome 16 was detected at all informative loci in 19 (41%); 13 of them showed allelic imbalance on the long but not on the short arm, with the occurrence of variable "breakpoints" in the pericentromeric region. The partial allelic imbalance in 11 tumors involved either the 16q22.1-qter LOH region or interstitial LOH regions. A commonly deleted region was found between D16S421 and D16S289 on 16q22.1 in 29 of the 30 tumors. The present data argue in favor of an important involvement of a tumor suppressor gene mapping to 16q22.1 in the genesis or progression of breast cancer.  相似文献   

2.
Loss of heterozygosity (LOH) at several chromosomal loci is a common feature of the malignant progression of human tumors. In the case of chromosome 11, LOH has been well documented in several types of solid neoplasms, including gastric carcinoma, suggesting the presence of suppressor gene(s) at 11p15 and 11q22-23. Little is currently known about the molecular events occurring during the development of gastric cancer. To define the regions of chromosome 11 involved in gastric cancer progression, we used high-density polymorphic markers to screen for LOH in matched normal and tumor tissue DNA from 60 primary gastric carcinomas. We found that 21% of the tumors showed LOH simultaneously at 11p15 and 11q22-23, 41% had LOH at 11p15, and 30% had LOH at 11q22-23. We confirm that the minimal critical area of LOH for 11p15.5 is the approximately 2-Mb region between loci D11S1318 and D11S988. However, when we analyzed the pattern of LOH according to the country of origin of the patient, LOH for 11q22-23 alone was found only in cases from Italy. The minimal critical region of LOH at 11q22-23 is identical to that identified for other solid tumors, suggesting that the same putative tumor suppressor gene(s) contained within this region is involved in the pathogenesis of several common human tumors.  相似文献   

3.
Alterations of chromosome 7 are among the most frequent cytogenetic abnormalities found in human breast carcinoma. We examined genetic changes on chromosome 7 in 113 primary human breast tumors, using both microsatellite and restriction fragment length polymorphism/variable number of tandem repeats polymorphism markers mapping to the long arm (15 markers) and the short arm (8 markers). Allelic imbalance at 1 or more loci was observed in 50 (44%) of 113 tumors on the long arm of chromosome 7 and in 41 (36%) tumors on the short arm. Genetic changes of one arm were significantly associated with alterations of the other arm. The 50 7q-altered tumor DNAs exclusively showed a loss of heterozygosity (LOH), 23 (46%) at all informative loci tested on 7q and 27 (54%) at some loci (interstitial and/or telomeric deletions on 7q). The pattern of LOH of these 27 tumors enabled us to identify 3 distinct consensus regions of deletions on 7q, only 1 of which (7q31 region) has already been described in breast cancer. Among the 41 7p-altered tumor DNAs, 32 had a gain and/or loss of the entire short arm of chromosome 7. Fourteen tumor DNAs showed an allelic gain, and 18 tumor DNAs showed a LOH at each locus on the short arm. The other 9 7p-altered tumors showing partial random alterations of chromosome 7p revealed no common altered regions. This is the first report of an association between alterations of DNA sequences on chromosome 7p and breast cancer. The results suggest that tumor suppressor genes are present on the long arm of chromosome 7 and are associated with breast tumorigenesis. Moreover, the frequent loss or gain of a whole copy of chromosome 7p suggests the involvement of a gene dosage effect of this chromosomal arm in the pathogenesis of breast cancer.  相似文献   

4.
Allelotype analysis of adult T-cell leukemia (ATL) was undertaken for the first time to identify chromosomal loci relevant to the development of acute/lymphomatous ATL. Loss of heterozygosity (LOH) was screened using 94 highly polymorphic microsatellite markers, distributed among all nonacrocentric, autosomal chromosomes. In each of the 22 cases, DNA obtained from their leukemic cells in acute/lymphomatous phase was compared with their constitutional DNA from mononuclear cells in chronic or remission phase. Allelic losses of at least on one chromosome arm occurred in 91% of the cases (20 individuals). Among 39 chromosome arms, allelic losses were observed on 31 arms at least for one sample. A high frequency of allelic loss (>30%) was seen on chromosome arms 6q (41%) and 17p (48%). The mean fractional allelic loss (FAL) was 0.109. These findings suggest that a novel tumor suppressor gene on chromosome arm 6q, as well as the p53 gene on chromosome arm 17p, probably have an important role in the development of acute/lymphomatous ATL.  相似文献   

5.
To understand the molecular pathways involved in the pathogenesis of squamous cell lung carcinoma, we obtained DNA from 94 microdissected foci from 12 archival surgically resected tumors including histologically normal epithelium (n=13), preneoplastic lesions (n=54), carcinoma is situ (CIS) (n=15) and invasive tumors (n=12). We determined loss of heterozygosity (LOH) at 10 chromosomal regions (3p12, 3p14.2, 3p14.1-21.3, 3p21, 3p22-24, 3p25, 5q22, 9p21, 13q14 RB, and 17p13 TP53) frequently deleted in lung cancer, using 31 polymorphic microsatellite markers, including 24 that spanned the entire 3p arm. Our major findings are as follows: (1) Thirty one percent of histologically normal epithelium and 42% of mildly abnormal (hyperplasia/metaplasia) specimens had clones of cells with allelic loss at one or more regions; (2) There was a progressive increase of the overall LOH frequency within clones with increasing severity of histopathological changes; (3) The earliest and most frequent regions of allelic loss occurred at 3p21, 3p22-24, 3p25 and 9p21; (4) The size of the 3p deletions increased with progressive histologic changes; (5) TP53 allelic loss was present in many histologically advanced lesions (dysplasia and CIS); (6) Analyses of 58 normal and non-invasive foci having any molecular abnormality, indicated that 30 probably arose as independent clonal events, while 28 were potentially of the same clonal origin as the corresponding tumor; (7) Nevertheless, when the allelic losses in the 30 clonally independent lesions and their clonally unrelated tumors were compared the same parental allele was lost in 113 of 125 (90%) of comparisons. The mechanism by which this phenomenon (known as allele specific mutations) occurs is unknown; (8) Four patterns of allelic loss in clones were found. Histologically normal or mildly abnormal foci had a negative pattern (no allelic loss) or early pattern of loss while all foci of CIS and invasive tumor had an advanced pattern. However dysplasias demonstrated the entire spectrum of allelic loss patterns, and were the only histologic category having the intermediate pattern. Our findings indicate that multiple, sequentially occurring allele specific molecular changes commence in widely dispersed, apparently clonally independent foci, early in the multistage pathogenesis of squamous cell carcinomas of the lung.  相似文献   

6.
Loss of heterozygosity (LOH) of chromosomal arm 8p has been reported to occur at high frequency for a number of common forms of human cancer, including breast cancer. The objectives of this study were to define the regions on this chromosomal arm that are likely to contain breast cancer tumor suppressor genes and to determine when loss of chromosomal arm 8p occurs during breast cancer progression. For mapping the tumor suppressor gene loci, we evaluated 60 cases of infiltrating ductal cancer for allelic loss using 14 microsatellite markers mapped to this chromosomal arm and found LOH of 8p in 36 (60%) of the tumors. Whereas most of these tumors had allelic loss at all informative markers, five tumors had partial loss of 8p affecting two nonoverlapping regions. LOH for all but one of the tumors with 8p loss involved the region between markers D8S560 and D8S518 at 8p21.3-p23.3, suggesting that this is the locus of a breast cancer tumor suppressor gene. We then studied LOH of 8p in 38 cases of ductal carcinoma in situ (DCIS) with multiple individually microdissected tumor foci evaluated for each case. LOH of 8p was found in 14 of the DCIS cases (36%), including 6 of 16 cases of low histological grade and 8 of 22 cases of intermediate or high histological grade. In four of these DCIS cases, 8p LOH was seen in some but not all of the multiple tumor foci examined. These data suggest that during the evolution of these tumors, LOH of 8p occurred after loss of other chromosomal arms that were lost in all tumor foci. Thus, LOH of 8p, particularly 8p21.3-p23, is a common genetic alteration in infiltrating and in situ breast cancer. Although 8p LOH is common even in low histological grade DCIS, this allelic loss often appears to be preceded by loss of other alleles in the evolution of breast cancer.  相似文献   

7.
The present study was undertaken to analyse the loss of heterozygosity (LOH) of the three genes, BRCA1, BRCA2 and ATM, and their correlation to clinicopathological parameters in sporadic breast cancer. We studied 59 sets of invasive ductal carcinoma, compared to matched normal control DNA. Microsatellite markers intragenic to BRCA1 (D17S1323, D17S1322, D17S855), BRCA2 (D13S1699, D13S1701, D13S1695) and ATM (D11S2179) were simultaneously used. In addition, one marker telomeric to BRCA2 (D13S1694) and four markers flanking ATM were analysed (D11S1816, D11S1819, D11S1294, D11S1818). Thirty-one per cent of the informative cases showed loss of heterozygosity for the BRCA1 gene, 22.8% for BRCA2 gene and 40% for ATM. LOH of BRCA1 correlated with high grade tumors (p=0.0005) and negative hormone receptors (p=0.01). LOH of ATM correlated with higher grade (p=0.03) and a younger age at diagnosis (p=0.03) in our set of tumors. No correlations were detected between BRCA2 LOH and any of the analysed clinicopathological parameters. However, a correlation was detected between allelic loss of the D13S1694 marker, telomeric to BRCA2, and larger tumor sizes and negative estrogen receptors, favoring the hypothesis of the presence of another putative tumor suppressor gene, telomeric to BRCA2, in the 13q12-q14 region. Only 11 tumors had LOH at more than one of the three genes, most of them (6/11) associated LOH of BRCA1 and ATM. One tumor only combined loss of the three genes BRCA1, BRCA2 and ATM.  相似文献   

8.
The loss of genetic material on chromosome 10q is frequent in different tumors and particularly in malignant gliomas. We analyzed 90 of these tumors and found loss of heterozygosity (LOH) in >90% of the informative loci in glioblastoma multiforme (GBM). Initial studies restricted the common LOH region to 10q24-qter. Subsequently, the study of a pediatric GBM suggested D10S221 and D10S209, respectively, as centromeric and telomeric markers of a 4-cM LOH region. It is interesting to note that, in one subset of cells from this tumor, locus D10S209 seems involved in the allelic imbalance of a larger region, with D10S214 as telomeric marker. This 17-cM region contains the D10S587-D10S216 interval of common deletion recently defined on another set of gliomas.  相似文献   

9.
Detailed deletion mapping of chromosome 6q has shown that the highest percentage of loss of heterozygosity (LOH) is located at 6q25-q27 and suggested that an ovarian cancer associated tumor suppressor gene may reside in this region. To further define the smallest region of common loss, we used 12 tandem repeat markers spanning a region no more than 18 cM, located between 6q25.1 and 6q26, to examine allelic loss in 54 fresh and paraffin embedded invasive ovarian epithelial tumor tissues. Loss of heterozygosity was observed more frequently at the loci defined by marker D6S473 (14 of 32 informative cases, 44%) and marker D6S448 (17 of 40 informative cases, 43%). Detailed mapping of chromosome 6q25-q26 in these tumor samples identified a 4 cM minimal region of LOH between markers D6S473 and D6S448 (6q25.1-q25.2). Loss of heterozygosity at D6S473 correlated significantly both with serous versus non-serous ovarian tumors (P=0.040) and with high grade versus low grade specimens (P=0.023). The results suggest that a 4 cM deletion unit located at 6q25.1-q25.2 may contain the putative tumor suppressor gene which may play a role in the development and progression of human invasive epithelial ovarian carcinomas (IEOC).  相似文献   

10.
An extended analysis for loss of heterozygosity (LOH) on eight chromosomes was conducted in a series of 82 Wilms tumors. Observed rates of allele loss were: 9.5% (1p), 5% (4q), 6% (6p), 3% (7p), 9.8% (11q), 28% (11p15), 13.4% (16q), 8.8% (18p), and 13.8% (22q). Known regions of frequent allele loss on chromosome arms 1p, 11p15, and 16q were analyzed with a series of markers, but their size could not be narrowed down to smaller intervals, making any positional cloning effort difficult. In contrast to most previous studies, several tumors exhibited allele loss for multiple chromosomes, suggesting an important role for genome instability in a subset of tumors. Comparison with clinical data revealed a possible prognostic significance, especially for LOH on chromosome arms 11q and 22q with high frequencies of anaplastic tumors, tumor recurrence, and fatal outcome. Similarly, LOH 16q was associated with anaplastic and recurrent tumors. These markers may be helpful in the future for selecting high-risk tumors for modified therapeutic regimens.  相似文献   

11.
Loss of heterozygosity (LOH) on chromosome 9 is the most frequent genetic alteration in bladder cancer identified to date, suggesting the presence of key gene(s) for this pathology. In this study, we examined 44 bladder tumors and 21 normal bladder samples for LOH on both arms of chromosome 9. Sixteen microsatellite markers, 12 on the short arm (encompassing 9p21-22) and 4 on the long arm (encompassing 9q33-34), were chosen for their highly frequent alterations in bladder cancer. LOH for at least one marker was identified in 42 tumor samples (95.5%), and 14 tumors (32%) displayed LOH for all informative tested markers. Detailed analysis showed that 2 markers on chromosome 9p (D9S157 and D9S156) had the highest frequencies of allelic loss (about 70%), independent of tumor grade and stage. The same study was performed on the 21 normal bladder mucosa samples: 50% of informative cases presented a single specific LOH at the D9S156 locus. Normal samples showing LOH at this locus were therefore screened with 3 novel microsatellite markers in the 810-kb region incorporating D9S156. Using this marker, we found no further heterozygous loss in this region. This result allows different interpretations of the D9S156 loss in normal bladder mucosa, and suggests that D9S156 may be more an indicator of bladder epithelium impairment than a tumor-initiation marker. Similarly, this unexpected result calls in question the interpretation of LOH studies.  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the most common cancers in many parts of the world, however the molecular mechanisms underlying liver cell transformation remain obscure. A genome-wide scan of loss of heterozygosity (LOH) in tumors provides a powerful tool to search for genes involved in neoplastic processes. To identify recurrent genetic alterations in liver tumors, we examined DNAs isolated from 120 HCCs and their adjacent non tumorous parts for LOH using a collection of 195 microsatellite markers located roughly every 20 cM throughout 39 autosomal arms. The mean heterozygosity was 73%. Our findings provide additional support that LOH for loci on chromosomal arms 1p, 4q, 6q, 8p, 13q and 16p is significantly elevated in HCC. The highest percentage of LOH is found for a locus in 8p23 (42% of informative csaes). This corresponds to one of the most common genetic abnormalities reported to date in these tumors. In addition, high ratio of LOH (> or = 35%) is observed on chromosome arms which had not been implicated in previous studies, notably on 1q, 2q and 9q. No correlation was found between LOH of specific chromosomal regions and etiologic factors such as chronic infections with hepatitis B or C viruses. This first report of an extensive allelotypic analysis of HCC should help in identifying new genes whose loss of function contributes to the development of liver cancer.  相似文献   

13.
It is known that nearly 5% of gastric carcinomas arise under the age of 40. To elucidate genetic alterations in these patients, we performed studies using microsatellite assay in 27 gastric cancers under 35 years of age, composed of 5 well and 22 poorly differentiated adenocarcinomas. We detected replication errors (RERs) in 18 (67%) of 27 tumors, but no germline mutation in DNA mismatch repair genes (hMLH1 and hMSH2), except fory 3 somatic mutations in the hMLH1 gene. Loss of heterozygosity (LOH) at D17S855, located on chromosome 17q21 (BRCA1), was detected in 8 (40%) of 20 informative cases. In 12 (44%) of 27 cases, LOH on chromosome 17q12-21 including the BRCA1 was found in several neighboring markers in this region, while no mutation was found in the BRCA1 gene. Four (40%) of 10 scirrhous type gastric cancers exhibited wide allelic deletions on chromosome 17q12-21. These results overall suggest that young gastric cancer patients display highly frequent micro-satellite instability that might be due to defect of DNA repair system rather than hMLH1 and hMSH2. In addition, chromosome 17q12-21 including BRCA1 locus may contain a candidate for tumor suppressor gene, particularly in scirrhous type gastric cancers arising in young patients.  相似文献   

14.
Cancer is a genetic disease resulting from an accumulation of genetic abnormalities in various regulatory genes. Most studies on genetic alterations in human breast cancer have involved primary tumors. The possible involvement of specific tumor suppressor genes in the later stages of cancer progression is poorly documented. We investigated allelic losses associated with breast cancer progression by analyzing 55 polymorphic markers on 11 autosomal chromosomes in a series of 49 relapses (23 local recurrences and 26 distant metastases). All of the loss of heterozygosity (LOH) regions reported in primary breast tumors were frequent in both series of relapses. These results suggest that the allelic losses that are common to the different series of samples occur very early during tumor progression. This study points to candidate metastasis-related genes targeted by LOH on chromosome arms 3p21.3, 16q22.2-23.2, and, possibly, 7q31 but provides no clear evidence of LOH affecting previously described metastasis-related genes such as NME1, MTS1, and TSG101.  相似文献   

15.
Frequent allelic losses on chromosome 9 are seen in a wide variety of human tumors; moreover, two genes (P16 and PTC) whose mutant alleles confer predispositions to some inherited cancer syndromes have been identified on this chromosome. Using 15 highly polymorphic microsatellite markers distributed on both arms of chromosome 9, we tested 96 primary breast carcinomas for allelic loss in order to define the locations of genes that might be involved in this type of tumor. Allelic loss was observed in 37 of the tumors (39%) and detailed deletion mapping identified target regions at 9p21, 9q22.3 and 9q33. Losses at 9q22.3 and 9q33 were correlated with the presence of lymph node metastasis, and allelic loss at 9q22.3 was observed more frequently in scirrhous tumors than in less aggressive histologic types. Therefore, inactivation of tumor suppressor genes in 9q22.3 and 9q33 regions might play a role in progression of breast cancers, especially in metastasis to lymph nodes and in development of scirrhous tumors.  相似文献   

16.
Loss of genetic material, including loss of loci on chromosome arms 6q, 9p, and 10q, occurs frequently in cutaneous melanoma but infrequently in benign melanocytic nevi or other melanocytic lesions, suggesting that these genetic alterations are important in the development and progression of melanoma. To examine whether allelic loss is of prognostic importance in melanoma, disease-free survival was related to loss of heterozygosity on 6q, 9p and 10q in 83 individuals with sporadic primary cutaneous melanoma. Loss of chromosome arms 6q and 10q were each significantly associated with a poorer clinical outcome (P=0.013 and P=0.001 respectively). In a subgroup of 41 subjects whose primary tumours were allelotyped, the fractional allelic loss (FAL) at 39 autosomal arms also significantly correlated with disease-free survival (P=0.013), with an increase in FAL associated with a poorer outcome; this association remained significant when controlled for tumour thickness (P=0.035). In addition, a greater proportion of cells were immunopositive for Ki67 antigen, p53 and p21WAF1 protein in the primary melanomas than in the benign melanocytic nevi, however, only p53 over-expression was significantly associated with improved survival (P=0.041).  相似文献   

17.
Karyotypic and molecular data indicate that genetic alterations of the long arm of chromosome 11 (11q) are involved in the pathogenesis of malignant melanoma as well as of other malignancies. We have shown previously, by analysis of loss of heterozygosity (LOH), that a tumor-suppressor gene playing an important role in malignant melanoma is likely to be located within a 51-cM region at 11q23. Its loss appeared to be a late event in tumor progression and an indicator of a less favorable clinical outcome. To further test this hypothesis on a larger set of tumors and to refine the region(s) of common allelic loss, we analyzed 21 polymorphic microsatellite repeats on 11q. A PCR-based assay for LOH was used to study normal and tumor tissues from 53 individuals with primary cutaneous malignant melanoma or metastatic disease. Our findings indicate that in cutaneous malignant melanoma there are at least 2 distinct regions of common allelic loss on 11q, one of them centered around marker APOC3 at 11q23.1-q23.2 delineated by markers D11S1347 and D11S4142 and spanning approximately 5 Mb and a second 3-Mb region around marker D11S925 at 11q23.3 delineated by markers D11S528 and D11S1345. Both regions have been described as deletion targets or as being included within larger allelic deletions detected in several other common tumor types. Thus, these 2 putative melanoma-suppressor loci are likely to harbor tumor-suppressor genes relevant to tumorigenesis of melanoma and a number of other common human malignancies.  相似文献   

18.
Endocrine tumors (ETs) of pancreas and duodenum occur sporadically and as a part of multiple endocrine neoplasia type 1 (MEN1). The MEN1 tumor suppressor gene has been localized to chromosome 11q13 by linkage analysis but has not yet isolated. Previous allelic deletion studies in enteropancreatic ETs suggested MEN1 gene involvement in tumorigenesis of familial pancreatic ETs (nongastrinomas) and sporadic gastrinomas. However, only a few MEN1-associated duodenal gastrinomas and sporadic pancreatic nongastrinomas have been investigated. We used tissue microdissection to analyze 95 archival pancreatic and duodenal ETs and metastases from 50 patients for loss of heterozygosity (LOH) on 11q13 with 10 polymorphic markers spanning the area of the putative MEN1 gene. Chromosome 11q13 LOH was detected in 23 of 27 (85%) MEN1-associated pancreatic ETs (nongastrinomas), 14 of 34 (41%) MEN1-associated gastrinomas, 3 of 16 (19%) sporadic insulinomas, and 8 of 18 (44%) sporadic gastrinomas. Analysis of LOH on 11q13 showed different deletion patterns in ETs from different MEN1 patients and in multiple tumors from individual MEN1 patients. The present results suggest that the MEN1 gene plays a role in all four tumor types. The lower rate of 11q13 LOH in MEN1-associated and sporadic gastrinomas and sporadic insulinomas as compared to MEN1 nongastrinomas may reflect alternative genetic pathways for the development of these tumors or mechanisms of the MEN1 gene inactivation that do not involve large deletions. The isolation of the MEN1 gene is necessary to further define its role in pathogenesis of pancreatic and duodenal ETs.  相似文献   

19.
Several studies have indicated that frequent allelic losses in some specific chromosomal regions occur during colorectal cancer (CRC) progression. To clarify the correlation between such allelic losses and metastatic potential, the allelotype of lymph node-positive early CRCs, which are small but extremely malignant cancers consisting of metastatically competent cells, were investigated. Nineteen paraffin-embedded specimens of early CRC (pT1 tumors according to TNM classification) with positive lymph nodes were collected. The tumor tissues were examined for loss of heterozygosity (LOH), using microsatellite markers on chromosomes 1p34-36, 8p21-22, 14q32, 18q21 and 22q12-13. The relationship between p53 protein expression and the metastatic status was also investigated by immunohistochemical staining. A group of 20 early CRCs with negative lymph nodes having a similar distribution of macroscopic appearance were used as controls. Among the 19 node-positive tumors, LOH at 8p21-22 and 18q21 was detected in 11 cases (57.9%) and 17 cases (89.4%), respectively. Allelic losses within these 2 regions in node-positive tumors were significantly more frequent than that in node-negative ones (p < 0.01). No significant correlation was found between LOH at 1p34-36, 14q32 or 22q12-13 and lymph node metastasis. p53 protein expression was not significantly associated with lymph node metastasis. Our results suggest that putative tumor suppressor genes, which may be involved in the metastatic process of CRC, are located on chromosomes 8p21-22 and 18q21. Allelic losses in these regions are possible risk factors for lymph node metastasis of early CRC.  相似文献   

20.
The high incidence of loss of heterozygosity (LOH) on chromosome 18q in advanced non-small cell lung carcinomas indicates the presence of tumor suppressor gene(s) on this chromosome arm, which plays an important role in the acquisition of malignant phenotypes in lung cancers. In the present study, we examined 62 lung cancer specimens and 54 lung cancer cell lines for allelic imbalance at 11 microsatellite loci to define common regions of 18q deletions. Allelic imbalance of 18q was detected in 24 (55.8%) non-small cell lung carcinoma specimens and in 6 (31.6%) small cell lung carcinoma specimens, whereas a similar frequency of LOH was statistically inferred to occur in cell lines by analyzing marker homozygosity as an indirect measure of LOH. Five specimens and 11 cell lines showed partial or interstitial deletions of chromosome 18q, and 2 of them had homozygous deletions at the 18q21.1 region. A commonly deleted region was assigned between the D18S46 and y953G12R loci. The size of this region is less than 1 Mb, and the coding exons of three candidate tumor suppressor genes, Smad2, Smad4, and DCC, were mapped outside the region. This result suggests that the common region harbors a novel tumor suppressor gene involved in the progression of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号