首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The G-protein-regulated, inwardly rectifying K+ (GIRK) channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK channels are distributed predominantly throughout the heart, brain, and pancreas. In recent years, GIRK channels have received a great deal of attention for their direct G-protein betagamma (Gbetagamma) regulation. Native cardiac IKACh is composed of GIRK1 and GIRK4 subunits (Krapivinsky, G., Gordon, E. A., Wickman, K. A., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). Here, we examine the quaternary structure of IKACh using a variety of complementary approaches. Complete cross-linking of purified atrial IKACh protein formed a single adduct with a total molecular weight that was most consistent with a tetramer. In addition, partial cross-linking of purified IKACh produced subsets of molecular weights consistent with monomers, dimers, trimers, and tetramers. Within the presumed protein dimers, GIRK1-GIRK1 and GIRK4-GIRK4 adducts were formed, indicating that the tetramer was composed of two GIRK1 and two GIRK4 subunits. This 1:1 GIRK1 to GIRK4 stoichiometry was confirmed by two independent means, including densitometry of both silver-stained and Western-blotted native atrial IKACh. Similar experimental results could potentially be obtained if GIRK1 and GIRK4 subunits assembled randomly as 2:2 and equally sized populations of 3:1 and 1:3 tetramers. We also show that GIRK subunits may form homotetramers in expression systems, although the evidence to date suggests that GIRK1 homotetramers are not functional. We conclude that the inwardly rectifying atrial K+ channel, IKACh, a prototypical GIRK channel, is a heterotetramer and is most likely composed of two GIRK1 subunits and two GIRK4 subunits.  相似文献   

2.
GIRK1 and GIRK4 subunits combine to form the heterotetrameric acetylcholine-activated potassium current (IKACh) channel in pacemaker cells of the heart. The channel is activated by direct binding of G-protein Gbetagamma subunits. The GIRK1 subunit is atypical in the GIRK family in having a unique ( approximately 125-amino acid) domain in its distal C terminus. GIRK1 cannot form functional channels by itself but must combine with another GIRK family member (GIRK2, GIRK3, or GIRK4), which are themselves capable of forming functional homotetramers. Here we show, using an extracellularly Flag-tagged GIRK1 subunit, that GIRK1 requires association with GIRK4 for cell surface localization. Furthermore, GIRK1 homomultimers reside in core-glycosylated and nonglycosylated states. Coexpression of GIRK4 caused the appearance of the mature glycosylated form of GIRK1. [35S]Methionine pulse-labeling experiments demonstrated that GIRK4 associates with GIRK1 either during or shortly after subunit synthesis. Mutant and chimeric channel subunits were utilized to identify domains responsible for GIRK1 localization. Truncation of the unique C-terminal domain of Delta374-501 resulted in an intracellular GIRK1 subunit that produced normal IKACh-like channels when coexpressed with GIRK4. Chimeras containing the C-terminal domain of GIRK1 from amino acid 194 to 501 were intracellularly localized, whereas chimeras containing the C terminus of GIRK4 localized to the cell surface. Deletion analysis of the GIRK4 C terminus identified a 25-amino acid region required for cell surface targeting of GIRK1/GIRK4 heterotetramers and a 25-amino acid region required for cell surface localization of GIRK4 homotetramers. GIRK1 appeared intracellular in atrial myocytes isolated from GIRK4 knockout mice and was not maturely glycosylated, supporting an essential role for GIRK4 in the processing and cell surface localization of IKACh in vivo.  相似文献   

3.
G protein-gated inwardly rectifying K+ (GIRK) channels, which are important regulators of membrane excitability both in heart and brain, appear to function as heteromultimers. GIRK1 is unique in the GIRK channel family in that although it is by itself inactive, it can associate with the other family members (GIRK2-GIRK5) to enhance their activity and alter their single-channel characteristics. By generating a series of chimeras, we identified a phenylalanine residue, F137, in the pore region of GIRK1 that critically controls channel activity. F137 is found only in GIRK1, while the remaining GIRK channels possess a conserved serine residue in the analogous position. The single-point mutant GIRK4(S143F) behaved as a GIRK1 analog, forming multimers with GIRK2, GIRK4, or GIRK5 channels that exhibited prolonged single-channel open-time duration and enhanced activity compared with that of homomultimers. Expression of the corresponding GIRK1 (F137S) mutant alone resulted in appreciable channel activity with novel characteristics that was further enhanced upon coexpression with other GIRK subunits. Thus, although the F137 residue renders the GIRK1 subunit inactive, when combined with other GIRK heteromeric partners it alters their gating and contributes to their enhanced activity.  相似文献   

4.
The cardiac G protein-gated K+ channel, IKACh, is directly activated by G protein beta gamma subunits (Gbeta gamma). IKAChis composed of two inward rectifier K+ channel subunits, GIRK1 and GIRK4. Gbeta gamma binds to both GIRK1 and GIRK4 subunits of the heteromultimeric IKACh. Here we delineate the Gbeta gamma binding regions of IKACh by studying direct Gbeta gamma interaction with native purified IKACh, competition of this interaction with peptides derived from GIRK1 or GIRK4 amino acid sequences, mutational analysis of regions implicated in Gbeta gamma binding, and functional expression of mutated subunits in mammalian cells. Only two GIRK4 peptides, containing amino acids 209-225 or 226-245, effectively competed for Gbeta gamma binding. A single point mutation introduced into GIRK4 at position 216 (C216T) dramatically reduced the potency of the peptide in inhibiting Gbeta gamma binding and Gbeta gamma activation of expressed GIRK1/GIRK4(C216T) channels. Conversion of 5 amino acids in GIRK4 (226-245) to the corresponding amino acids found in the G protein-insensitive IRK1 channel, completely abolished peptide inhibition of Gbeta gamma binding to IKACh and Gbeta gamma activation of GIRK1/mutant GIRK4 channels. We conclude from this data that Gbeta gamma binding to GIRK4 is critical for IKACh activation.  相似文献   

5.
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2deltaC37). Kir6.2deltaC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2deltaC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2deltaC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.  相似文献   

6.
The inwardly rectifying K+ channels of the GIRK (Kir3) family, members of the superfamily of inwardly rectifying K+ channels (Kir), are important physiological tools to regulate excitability in heart and brain by neurotransmitters, and the only ion channels conclusively shown to be activated by a direct interaction with heterotrimeric G protein subunits. During the last decade, especially since their cloning in 1993, remarkable progress has been made in understanding the structure, mechanisms of gating, activation by G proteins, and modulation of these channels. However, much of the molecular details of structure and of gating by G protein subunits and other factors, mechanisms of modulation and desensitization, and determinants of specificity of coupling to G proteins, remain unknown. This review summarizes both the recent advances and the unresolved questions now on the agenda in GIRK studies.  相似文献   

7.
We have investigated aspects of ion selectivity in K+ channels by functional expression of wild-type and mutant heteromultimeric G protein-coupled inward-rectifier K+ (GIRK) channels in Xenopus oocytes. Within the K+ channel pore (P) region signature sequence, a large number of point mutations in GIRK1 and GIRK4 subunits have been made at a key tyrosine residue--the "signature" tyrosine of the GYG. Studies of mutant GIRK1/GIRK4 heteromultimers reveal that the GIRK1 and GIRK4 subunits contribute asymmetrically to K+ selectivity. The signature tyrosine of GIRK1 can be mutated to many different residues while retaining selectivity; in contrast, the analogous position in GIRK4 must be tyrosine for maximum selectivity. Other residues of the P region also contribute to selectivity, and studies with GIRK1/GIRK4 chimeras reveal that an intact, heteromultimeric P region is necessary and sufficient for optimal K+ selectivity. We propose that the GIRK1 and GIRK4 P regions play roles similar to the two P regions of an emerging family of K+ channels whose subunits each have two P regions connected in tandem. We find different consequences between similar mutations in inward-rectifier and voltage-gated K+ channels, which suggests that the pore structures and selectivity mechanisms in the two classes of channel may not be identical. We confirm that GIRK4 subunits alone can form functional channels in oocytes, but we find that these channels are measurably permeable to Na2+ and Ca2+.  相似文献   

8.
We have raised affinity-purified polyclonal antibodies specific for the inward rectifying K+ channel (IRK1/Kir2.1) and the G protein-activated inward rectifying K+ channel (GIRK1/Kir3.1) examined their distributions in the rat brain immunohistochemically. The regional expression pattern of the IRK1 and GIRK1 proteins were similar to those of mRNA of the previous in situ hybridization study. The subcellular distribution was studied in the cerebellum; cerebral cortex and hippocampus. In the cerebellum, the IRK1 protein was clearly detected in the somata and proximal dendrites of Purkinje cells, while the GIRK1 protein was present in the somata and clustered dendrites of granule cells. In the cerebral cortex and hippocampus, both IRK1- and GIRK1-immunoreactivities were detected in the somata and apical dendrites of the pyramidal cells. The presence of IRK1 or GIRK1 proteins in the axons could not proved by the present study. The developmental changes of the expression pattern of the GIRK1 protein were also investigated in the hippocampus and in the cerebellum of postnatal day (P) 7 to P17 rats. The GIRK1 protein was detected neither in the subgranular zone of the dentate gyrus nor in the proliferative zone of the external granule cell layer of the cerebellum, in which granule cell precursors are reported to proliferate, while it was clearly detected in the adjacent layer in which postmitotic but immature cells exist. These results imply that the expression of the GIRK1 protein starts just after the neuronal precursors finished the last mitotic cell division.  相似文献   

9.
Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.  相似文献   

10.
ATP-sensitive potassium (KATP) channels in the pancreatic beta cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The beta cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.  相似文献   

11.
G protein-gated inward rectifier K+ (GIRK) channels mediate hyperpolarizing postsynaptic potentials in the nervous system and in the heart during activation of Galpha(i/o)-coupled receptors. In neurons and cardiac atrial cells the time course for receptor-mediated GIRK current deactivation is 20-40 times faster than that observed in heterologous systems expressing cloned receptors and GIRK channels, suggesting that an additional component(s) is required to confer the rapid kinetic properties of the native transduction pathway. We report here that heterologous expression of "regulators of G protein signaling" (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native receptor --> GIRK signal transduction pathway. GIRK current waveforms evoked by agonist activation of muscarinic m2 receptors or serotonin 1A receptors were dramatically accelerated by coexpression of either RGS1, RGS3, or RGS4, but not RGS2. For the brain-expressed RGS4 isoform, neither the current amplitude nor the steady-state agonist dose-response relationship was significantly affected by RGS expression, although the agonist-independent "basal" GIRK current was suppressed by approximately 40%. Because GIRK activation and deactivation kinetics are the limiting rates for the onset and termination of "slow" postsynaptic inhibitory currents in neurons and atrial cells, RGS proteins may play crucial roles in the timing of information transfer within the brain and to peripheral tissues.  相似文献   

12.
Inward-rectifier K+ channels are a group of highly specialized K+ channels that accomplish a variety of important biological tasks. Inward-rectifier K+ channels differ from voltage-activated K+ channels not only functionally but also structurally. Each of the four subunits of the inward-rectifier K+ channels has only two instead of six transmembrane segments compared to the voltage-activated K+ channels. Thus far, there are no high-affinity ligands that directly target any inward-rectifier K+ channel. In the present study, we identified, purified, and synthesized a protein inhibitor of the inward-rectifier K+ channels. The inhibitor, called tertiapin, blocks a G-protein-gated channel (GIRK1/4) and the ROMK1 channel with nanomolar affinities, but a closely related channel, IRK1, is insensitive to tertiapin. Mutagenesis studies show that teritapin inhibits the channel by binding to the external end of the ion conduction pore.  相似文献   

13.
Xenopus oocytes injected with GIRK1 mRNA express inwardly rectifying K+ channels resembling IKACh. Yet IKACh, the atrial G protein-regulated ion channel, is a heteromultimer of GIRK1 and CIR. Reasoning that an oocyte protein might be substituting for CIR, we cloned XIR, a CIR homolog endogenously expressed by Xenopus oocytes. Coinjecting XIR and GIRK1 mRNAs produced large, inwardly rectifying K+ currents responsive to m2-muscarinic receptor stimulation. The m2-stimulated currents of oocytes expressing GIRK1 alone decreased 80% after injecting antisense oligonucleotides specific to the 5' untranslated region of XIR, but GIRK1/CIR currents were unaffected. Thus, GIRK1 without XIR or CIR only ineffectively produces currents in oocytes. This result suggests that GIRK1 does not form native homomultimeric channels.  相似文献   

14.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

15.
KATP channels are unique in requiring two distinct subunits (Kir6.2, a potassium channel subunit) and SUR1 (an ABC protein) for generation of functional channels. To examine the cellular trafficking of KATP channel subunits, green fluorescent protein (GFP) was tagged to the cytoplasmic N or C terminus of SUR1 and Kir6. 2 subunits and to the C terminus of a dimeric fusion between SUR1 and Kir6.2 (SUR1-Kir6.2). All tagged constructs generated functional channels with essentially normal properties when coexpressed with the relevant other subunit. GFP-tagged Kir6.2 (Kir6.2-GFP) showed perinuclear and plasma membrane fluorescence patterns when expressed alone or with SUR1, and a very similar pattern was observed when channel-forming SUR1-Kir6.2-GFP was expressed on its own. In contrast, whereas SUR1 (SUR1-GFP) also showed a perinuclear and plasma membrane fluorescence pattern when expressed alone, an apparently cytoplasmic fluorescence was observed when coexpressed with Kir6.2 subunits. The results indicate that Kir6.2 subunits traffic to the plasma membrane in the presence or absence of SUR1, in contradiction to the hypothesis that homomeric Kir6.2 channels are not observed because SUR1 is required as a chaperone to guide Kir6.2 subunits through the secretory pathway.  相似文献   

16.
1. The classical ATP sensitive K+ (K(ATP)) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil. 2. In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac type (SUR2A/Kir6.2) and vascular smooth muscle type (SUR2B/Kir6.2) of the K(ATP) channels heterologously expressed in HEK293T cells, a human embryonic kidney cell line, by using the patch-clamp method. 3. In the cell-attached recordings (145 mM K+ in the pipette), pinacidil and nicorandil activated a weakly inwardly-rectifying, glibenclamide-sensitive 80 pS K+ channel in both the transfected cells. 4. In the whole-cell configuration, pinacidil showed a similar potency in activating the SUR2B/Kir6.2 and SUR2A/Kir6.2 channels (EC50 of approximately 2 and approximately 10 microM, respectively). On the other hand, nicorandil activated the SUR2B/Kir6.2 channel > 100 times more potently than the SUR2A/Kir6.2 (EC50 of approximately 10 microM and > 500 microM, respectively). 5. Thus, nicorandil, but not pinacidil, preferentially activates the K(ATP) channels containing SUR2B. Because SUR2A and SUR2B are diverse only in 42 amino acids at their C-terminal ends, it is strongly suggested that this short part of SUR2B may play a critical role in the action of nicorandil on the vascular type classical K(ATP) channel.  相似文献   

17.
Loss of function mutations in kidney Kir1.1 (renal outer medullary potassium channel, KCNJ1) inwardly rectifying potassium channels can be found in patients suffering from hyperprostaglandin E syndrome (HPS), the antenatal form of Bartter syndrome. A novel mutation found in a sporadic case substitutes an asparagine by a positively charged lysine residue at amino acid position 124 in the extracellular M1-H5 linker region. When heterologously expressed in Xenopus oocytes and mammalian cells, current amplitudes from mutant Kir1.1a[N124K] channels were reduced by a factor of approximately 12 as compared with wild type. A lysine at the equivalent position is present in only one of the known Kir subunits, the newly identified Kir1.3, which is also poorly expressed in the recombinant system. When the lysine residue in guinea pig Kir1.3 (gpKir1.3) isolated from a genomic library was changed to an asparagine (reverse HPS mutation), mutant channels yielded macroscopic currents with amplitudes increased 6-fold. From single channel analysis it became apparent that the decrease in mutant Kir1.1 channels and the increase in mutant gpKir1.3 macroscopic currents were mainly due to the number of expressed functional channels. Coexpression experiments revealed a dominant-negative effect of Kir1.1a[N124K] and gpKir1.3 on macroscopic current amplitudes when coexpressed with wild type Kir1.1a and gpKir[K110N], respectively. Thus we postulate that in Kir1.3 channels the extracellular positively charged lysine is of crucial functional importance. The HPS phenotype in man can be explained by the lower expression of functional channels by the Kir1. 1a[N124K] mutant.  相似文献   

18.
Sulfonylureas stimulate insulin secretion from pancreatic beta-cells by closing ATP-sensitive K+ (K(ATP)). The beta-cell and cardiac muscle K(ATP) channels have recently been cloned and shown to possess a common pore-forming subunit (Kir6.2) but different sulfonylurea receptor subunits (SUR1 and SUR2A, respectively). We examined the mechanism underlying the tissue specificity of the sulfonylureas tolbutamide and glibenclamide, and the benzamido-derivative meglitinide, using cloned beta-cell (Kir6.2/SUR1) and cardiac (Kir6.2/SUR2A) K(ATP) channels expressed in Xenopus oocytes. Tolbutamide inhibited Kir6.2/SUR1 (Ki approximately 5 micromol/l), but not Kir6.2/SUR2A, currents with high affinity. Meglitinide produced high-affinity inhibition of both Kir6.2/SUR1 and Kir6.2/SUR2A currents (Kis approximately 0.3 micromol/l and approximately 0.5 micromol/l, respectively). Glibenclamide also blocked Kir6.2/SUR1 and Kir6.2/SUR2A currents with high affinity (Kis approximately 4 nmol/l and approximately 27 nmol/l, respectively); however, only for cardiac-type K(ATP) channels was this block reversible. Physiological concentrations of MgADP (100 micromol/l) enhanced glibenclamide inhibition of Kir6.2/SUR1 currents but reduced that of Kir6.2/SUR2A currents. The results suggest that SUR1 may possess separate high-affinity binding sites for sulfonylurea and benzamido groups. SUR2A, however, either does not possess a binding site for the sulfonylurea group or is unable to translate the binding at this site into channel inhibition. Although MgADP reduces the inhibitory effect of glibenclamide on cardiac-type K(ATP) channels, drugs that bind to the common benzamido site have the potential to cause side effects on the heart.  相似文献   

19.
We investigated the effects of muscarinic acetylcholine receptor stimulation on the expression levels of the G-protein-coupled inwardly rectifying K+ channel (GIRK) subunits using solution hybridization and immunoblot analyses. We report here that treatment of chick embryos in ovo with muscarinic agonist causes decreases in mRNA levels encoding GIRK1 and GIRK4 in atria but does not alter GIRK1 expression in ventricles. In addition, GIRK1 protein levels also demonstrate a decrease in atria upon muscarinic acetylcholine receptor stimulation. Numerous receptors couple to the activation of the GIRK family of inwardly rectifying K+ channels; thus, these decreases represent a novel mechanism for regulating physiological responses to chronic agonist exposure.  相似文献   

20.
ATP-sensitive potassium channels are under complex regulation by intracellular ATP and ADP. The potentiating effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We determined whether ATP directly interacts with a binding site on the Kir6.2 subunit to mediate channel inhibition by analyzing binding of a photoaffinity analog of ATP (8-azido-[gamma-32P]ATP) to membranes from COS-7 cells transiently expressing Kir6.2. We demonstrate that Kir6.2 can be directly labeled by 8-azido-[gamma-32P]ATP but that the related subunit Kir4.1, which is not inhibited by ATP, is not labeled. Photoaffinity labeling of Kir6.2 is reduced by approximately 50% with 100 microM ATP. In addition, mutations in the NH2 terminus (R50G) and the COOH terminus (K185Q) of Kir6.2, which have both been shown to reduce the inhibitory effect of ATP upon Kir6.2 channel activity, reduced photoaffinity labeling by >50%. These results demonstrate that ATP binds directly to Kir6.2 and that both the NH2- and COOH-terminal intracellular domains may influence ATP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号