首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New biodiesel production processes comprising one‐step and two‐step supercritical dimethyl carbonate methods have been pioneered. The use of dimethyl carbonate allows the reaction conditions to be mild and thus avoid unwanted deterioration of substrates during reaction. In this process, without any catalyst applied, supercritical dimethyl carbonate converts triglycerides (rapeseed oil) into fatty acid methyl esters (FAME) along with glycerol carbonate as a value‐added by‐product, instead of glycerol. Free fatty acids could be also converted into FAME so that the total yield of biodiesel for both methods resulted in over 96 wt%. In addition, the produced FAME satisfy the fuel requirements for the international standards of biodiesel specification.  相似文献   

2.
Biodiesel is an alternative fuel for diesel engines that consists of the monoalkyl esters of vegetable oils or animal fats. Currently, most biodiesel consists of methyl esters, which have poor cold-flow properties. Methyl esters of soybean oil will crystallize and plug fuel filters and lines at about 0°C. However, isopropyl esters have better cold-flow properties than methyl esters. This paper describes the production of isopropyl esters and their evaluation in a diesel engine. The effects of the alcohol amount, the catalyst amount, and two different catalysts on producing quality biodiesel were studied. Both sodium isopropoxide and potassium isopropoxide were found to be suitable for use in the transesterification process. A 20∶1 alcohol/TG molar ratio and a catalyst amount equal to 1% by weight (based on the TG amount) of sodium metal was the most cost-effective way to produce biodiesel fuel. The emissions from a diesel engine running on isopropyl esters made from soybean oil and yellow grease were investigated by comparing them with No. 2 diesel fuel and methyl esters. For nitrogen oxide emission, the difference between the biodiesel produced from soybean oil and yellow grease was greater than the difference between the methyl and isopropyl esters of both feedstocks. The other emissions from using isopropyl esters were about 50% lower in hydrocarbons, 10–20% lower in carbon monoxide, and 40% lower in smoke number when compared with No. 2 diesel fuel.  相似文献   

3.
Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst to give the corresponding monoalkyl esters. This article reports experimental data on the production of fatty acid methyl esters from vegetable oils, soybean and cottonseed oils using sodium hydroxide as alkaline catalyst. The variables affecting the yield and characteristics of the biodiesel produced from these vegetable oils were studied. The variables investigated were reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-methanol molar ratio (1:3-1:9). From the obtained results, the best yield percentage was obtained using a methanol/oil molar ratio of 6:1, sodium hydroxide as catalyst (1%) and 60 ± 1 °C temperature for 1 h. The yield of the fatty acid methyl ester (FAME) was determined according to HPLC. The composition of the FAME was determined according to gas chromatography. The biodiesel samples were physicochemically characterized. From the results it was clear that the produced biodiesel fuel was within the recommended standards of biodiesel fuel.  相似文献   

4.
Biodiesel was produced from mustard oil utilizing transesterification with methanol, ethanol, propanol, and butanol to evaluate the characteristics of mustard biodiesel as an additive to regular diesel. Mustard oil was transesterified with alcohol at 6:1 alcohol to oil molar ratio, using KOH as a catalyst at 1 wt%. The maximum ester content achieved by this method was only 66%. Distillation was then used to purify the ester, raising the ester content to 99.8%. Alternatively, mustard oil methyl ester (MME) can be mixed with esters derived from canola oil or soybean oil to achieve an ASTM quality biodiesel. Biodiesel derived from mustard showed great potential as lubricity additive for regular diesel fuel. With an addition of 1% MME, lubricity of diesel fuel was improved by 43.7%. It is also found that methyl ester is the best lubricity additive among all esters (methyl-, ethyl-, propyl-, and butyl-ester). MME can be used at −16 °C without freezing whereas monounsaturated compounds (oleic, eicosenoic, and erucic esters) largely present in esters derived from mustard oil can tolerate −42 to −58 °C. Monounsaturated esters derived from higher alcohols such as butyl alcohol demonstrated a superior low temperature tolerance (−58 °C) as compared to that derived from lower alcohol such as methyl alcohol (−42 °C).  相似文献   

5.
One of the positive features of biofuel concerning environmental protection is its high biodegradability. Fuel is considered to be biodegradable if not less than 90% of it degrades within 21 days. The aim of this work was to determine the biodegradability of various kinds of fatty acid methyl esters and their mixtures with fossil diesel fuel in natural environments. It was determined that fatty acid methyl esters meet the requirements for biodegradability set by the EU. Of rapeseed oil fatty acid methyl esters (RME), 91.2% degraded within 21 days, compared to 94.2% of rapeseed oil fatty acid ethyl esters, 98.3% of linseed oil fatty acid methyl esters (LSME), 90% of tallow fatty acid methyl esters, and 92.5% of pork lard fatty acid methyl esters (LME), while the amount of degraded fossil diesel fuel reached only 57.3%. The biodegradability of multi‐component biofuels containing RME, LSME and LME is similar; the best is of a mixture of 70% RME, 6% LSME and 24% LME. It was determined that more than 90% of multi‐component biofuel and fossil diesel fuel mixtures degrade within 21 days when they contain 35% and more of multi‐component biofuel.  相似文献   

6.
Long storage stability of biodiesel made from rapeseed and used frying oil   总被引:10,自引:5,他引:5  
The degree of physical and chemical deterioration of biodiesel produced from rapeseed and used frying oil was studied under different storage conditions. These produced drastic effects when the fuel was exposed to daylight and air. However, there were no significant differences between undistilled biodiesel made from fresh rapeseed oil and used frying oil. The viscosity and neutralization numbers rose during storage owing to the formation of dimers and polymers and to hydrolytic cleavage of methyl esters into fatty acids. However, even for samples studied under different storage conditions for over 150 d the specified limits for viscosity and neutralization numbers had not been reached. In European biodiesel specifications there will be a mandatory limit for oxidative stability, because it may be a crucial parameter for injection pump performance. The value for the induction period of the distilled product was very low. The induction period values for the undistilled samples decreased very rapidly during storage, especially with exposure to light and air.  相似文献   

7.
Umer Rashid 《Fuel》2008,87(3):265-273
Present work reports an optimized protocol for the production of biodiesel through alkaline-catalyzed transesterification of rapeseed oil. The reaction variables used were methanol/oil molar ratio (3:1-21:1), catalyst concentration (0.25-1.50%), temperature (35-65 °C), mixing intensity (180-600 rpm) and catalyst type. The evaluation of the transesterification process was followed by gas chromatographic analysis of the rapeseed oil fatty acid methyl esters (biodiesel) at different reaction times. The biodiesel with best yield and quality was produced at methanol/oil molar ratio, 6:1; potassium hydroxide catalyst concentration, 1.0%; mixing intensity, 600 rpm and reaction temperature 65 °C. The yield of the biodiesel produced under optimal condition was 95-96%. It was noted that greater or lower the concentration of KOH or methanol than the optimal values, the reaction either did not fully occur or lead to soap formation.The quality of the biodiesel produced was evaluated by the determinations of important properties such as density, specific gravity, kinematic viscosity, higher heating value, acid value, flash point, pour point, cloud point, combustion point, cold filter plugging point, cetane index, ash content, sulphur content, water content, copper strip corrosion value, distillation temperature and fatty acid composition. The produced biodiesel was found to exhibit fuel properties within the limits prescribed by the latest American Standards for Testing Material (ASTM) and European EN standards.  相似文献   

8.
Heating deteriorates the physicochemical properties of a vegetable oil for both edible and biofuel uses. The parameters for edible olive oil are established by European Union regulations and by the International Olive Council. The properties of a vegetable oil to be used as a source for biodiesel production are indicated by the German DIN 51605 for rapeseed oil. Biofuel properties are described by the European EN 14214 and the North American ASTM 6751 standards for biodiesel. It is useful to know how temperature and heating duration influence the physicochemical properties of olive oil. Free acidity, refractive index and myristic acid were not significantly influenced by temperature and heating duration. K232, K266, K270, K274, p-anisidine value, totox index, kinematic viscosity (at 30, 40, 50 °C), estimated higher heating value, relative density, and cetane number increased during olive oil heating. The biological properties: iodine value, oxidative stability index, antiradical (2,2-diphenyl-1-picrylhydrazyl radical, DPPH?) activity, and phenol content, decreased when time and temperature increased. Fatty acid methyl esters were highly influenced by the applied variables. Almost all the fatty acid methyl esters, except myristic, stearic, and arachidic acid esters, were influenced by the combined effect of temperature and time in a very highly significant level. These results show how temperature and duration of heating influence extra virgin olive oil degradation for both edible use and biodiesel production.  相似文献   

9.
In recent years, the acceptance of fatty acid methyl esters (biodiesel) as an alternative fuel has rapidly grown in EU. The most common method for biodiesel production is based on triglyceride transesterification to methyl esters with dissolved sodium hydroxide in methanol as catalyst. In this study, cottonseed oil and used frying oil were subjected to the transesterification reaction with tetramethyl ammonium hydroxide and benzyltrimethyl ammonium hydroxide as strong base catalysts. This work investigates the optimum conditions for biodiesel production using amine-based liquid catalysts. Biodiesel ester content was strongly related with the type of feedstock and the reaction variables, such as those of the catalyst concentration, methanol to oil molar ratio, and reaction time. The overall results suggested that the transesterification of cottonseed oil achieved high conversion rates with both catalysts, while the use of waste oil resulted in lower yields of methyl esters due to the possible formation of amides.  相似文献   

10.
Shiro Saka  Yohei Isayama  Zul Ilham  Xin Jiayu 《Fuel》2010,89(7):1442-1446
The production of glycerol as a by-product is unavoidable in the current conventional biodiesel manufacturing processes. Since biodiesel production is expected to increase in the near future, effective utilization of glycerol will become an issue of interest. In this study, therefore, a process consisting of subcritical acetic acid treatment to convert rapeseed oil to fatty acids and triacetin followed by conversion of the obtained fatty acids to their fatty acid methyl esters in supercritical methanol treatment was investigated. The obtained results clearly revealed that this two-step reaction could proceed effectively at a high reaction rate, and that fatty acid methyl esters and triacetin could be obtained under milder reaction condition than the one-step process utilizing supercritical methyl acetate and supercritical methanol.  相似文献   

11.
《Fuel Processing Technology》2005,86(10):1087-1096
Semirefined and refined vegetable oils are the predominant feedstocks for the production of biodiesel. However, their relatively high costs render the resulting fuels unable to compete with petroleum-derived fuel. We have investigated the production of fatty acid methyl esters (FAME; biodiesel) from soapstock (SS), a byproduct of edible oil refining that is substantially less expensive than edible-grade refined oils. Multiple approaches were taken in search of a route to the production of fatty acid methyl esters from soybean soapstock. The most effective method involved the complete saponification of the soapstock followed by acidulation using methods similar to those presently employed in industry. This resulted in an acid oil with a free fatty acid (FFA) content greater than 90%. These fatty acids were efficiently converted to methyl esters by acid-catalyzed esterification. The fatty acid composition of the resulting ester product reflected that of soy soapstock and was largely similar to that of soybean oil. Following a simple washing protocol, this preparation met the established specifications for biodiesel of the American Society for Testing and Materials. Engine emissions and performance during operation on soy soapstock biodiesel were comparable to those on biodiesel from soy oil. An economic analysis suggested that the production cost of soapstock biodiesel would be approximately US$ 0.41/l, a 25% reduction relative to the estimated cost of biodiesel produced from soy oil.  相似文献   

12.
Rubber seed oil (RSO) is a high‐potential feedstock for the production of biodiesel fuel (BDF) in Asia. Transesterification using fatty acid methyl esters (FAMEs) as co‐solvents was developed for BDF production from RSO with high content of free fatty acids (FFAs). The homogeneous system (FAMEs/triglyceride/methanol) was attained when the FAME content was more than 30 wt %. After esterification of RSO, the crude RSO obtained was transesterified with FAMEs as a co‐solvent. The quality of BDF with high FAME content satisfied the criteria of the EN 14214/JIS K2390 standards. These results suggest that FAMEs converted from FFAs can be applied as a co‐solvent and, thus, reused for BDF production.  相似文献   

13.
邵平  姜绍通  谈建 《化学工程》2007,35(3):59-62
通过分子蒸馏技术从菜籽油脱臭馏出物中制备生物柴油,并通过对比试验,研究了柴油机燃烧生物柴油和普通柴油对发动机经济性和排放特性的影响。研究结果表明,脱臭馏出物中制备的生物柴油与普通的0#柴油性质相似,脂肪酸甲酯质量分数在90%以上。在生物柴油的排放中,除CO2排放和耗油率相对升高,CO2排放增加幅度达到20%左右;CO,CH和碳烟都相对降低,烟度和CH最高降幅分别达到54%和88%;NOx排放在高载荷阶段体积分数上升。  相似文献   

14.
The military uses JP-8, a kerosene type hydrocarbon, to fuel most of its vehicles and is seeking a renewable alternative fuel that meets strict JP-8 specifications. Biodiesel is typically a mixture of different alkyl esters produced from the transesterification of triglycerides readily available in plant oils and used cooking oil. To date, no traditional biodiesel meets the requirements for heat of combustion, freezing point, viscosity and oxidative stability to be a stand-alone replacement for JP-8. This work is a fundamental survey of the heat of combustion of single fatty acid esters and a predictive model for estimating the heat of combustion given a known molecular structure. The gross heat of combustion of various C6–C18 fatty acids and the methyl, propyl and isopropyl esters of these fatty acids was measured. This study sought to relate the effect of chain length, degree of unsaturation and branching to the critical fuel property of the gross heat of combustion (H c). It was found that H c (kJ/g) increased with chain length. A nearly linear relationship was found between wt% carbon and hydrogen, and H c. Group contribution models previously published for hydrocarbons and polymers were modified to more accurately predict the heat of combustion of the fatty acids and esters. Modification of the molar heat values of carboxylic acid, methyl, and methylene groups improved correlation of the model with the experimental results.  相似文献   

15.
Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel‐related properties were determined. The fatty acid profile was also determined with saturated fatty acids comprising slightly more than 35 %, 16.5 % palmitic, 14.5 % stearic, as well as lesser amounts of even longer‐chain fatty acids. Linoleic acid is the most prominent acid at about 49 %. Corresponding to the high content of saturated fatty acid methyl esters, cold flow is the most problematic property as shown by a high cloud point of slightly >20 °C. Otherwise, the properties of G. sepium methyl esters are acceptable for biodiesel use when comparing them to specifications in biodiesel standards but the problematic cold flow properties would need to be observed. The 1H‐ and 13C‐NMR spectra of G. sepium methyl esters are reported.  相似文献   

16.
Biodiesel is a renewable bio-fuel derived from natural fats or vegetable oils, and it is considered as a promising alternative to substitute diesel fuels. Cetane number, viscosity, density, and higher heating value are important properties to affect the utilization of biodiesel fuels, because they are involved in the definition of fuel quality and are required as input data for predictive engine combustion models. This work presents the characterization of two biodiesel samples made from beef tallow and soybean oil through their fatty acid methyl esters (FAMEs) profile. Empirical equations were developed to estimate four physical properties of methyl esters; and an average absolute deviation (AAD) of 5.95%, 2.57%, 0.11% and 0.21% for the cetane number, kinematic viscosity, density, and higher heating value were founded. Cetane number, viscosity, and higher heating value increases because of the increase of molecular weight and these physical properties decrease as the number of double bonds increases. Unlike that of above properties, density decreases as molecular weight increases and density increases as the degree of unsaturation increases. Two general mixing rules and five biodiesel samples were used to study the influence of FAMEs over the physical properties of biodiesel. The prediction of the cetane number, kinematic viscosity, density and higher heating value of biodiesel is very close to the experimental values.  相似文献   

17.
Biodiesel has been recommended as an environmentally benign alternative fuel because it emits a comparatively small amount of air pollutants. Biodiesel can be processed from canola oil, which has a low liquefaction temperature owing to its high unsaturated fatty acid content, which also limits its engine-clogging effects. In this study, optimum conditions such as the amount of methanol, the alkali catalyst, and the reaction temperature were determined for production of biodiesel from canola oil. A maximum biodiesel yield was shown at an oil/methanol mole ratio of 1:6. The optimum amount of catalyst was 1 wt% of potassium hydroxide. The biodiesel yield and the methyl ester content were high when the reaction temperature was 55 °C. The consolute temperature for determining the maximum biodiesel yield was proposed in consideration of the boiling point of methanol. The energy density was analyzed for the final products of biodiesel in comparison to the raw canola oil and other plant oil based biodiesels.  相似文献   

18.
生物柴油低温流动改进剂复配研究   总被引:3,自引:0,他引:3  
韩伟  杨湄  刘昌盛  黄凤洪  黄庆德 《应用化工》2007,36(10):964-967
采用碱催化法制备菜籽油生物柴油和棕榈油生物柴油,对其主要品质指标进行分析;考察了添加不同的柴油低温流动改进剂及其复配物对生物柴油低温流动性能的影响。结果表明,柴油低温流动改进剂能够改善生物柴油低温流动性能;将其进行复配后,能表现出协同效应,取得更好的降滤效果,尤其能使饱和脂肪酸甲酯含量高的棕榈油生物柴油冷滤点降低8℃;不同生物柴油对柴油低温流动改进剂或其复配物感受性存在较大差异,不饱和脂肪酸甲酯含量高,且脂肪酸甲酯种类较多、分布较广的菜籽油生物柴油对单一低温流动改进剂感受性好,而饱和脂肪酸甲酯含量高,且脂肪酸甲酯种类分布较集中的棕榈油生物柴油对复配物感受性好。  相似文献   

19.
Shiro Saka  Yohei Isayama 《Fuel》2009,88(7):1307-1313
Production of glycerol is unavoidable in the conventional processes for biodiesel fuel (BDF) production. In this research, therefore, we investigated conversion of rapeseed oil to fatty acid methyl esters (FAME) and triacetin (TA) by processing of supercritical methyl acetate. As a result, it was discovered that the trans-esterification reaction of triglycerides with methyl acetate can proceed without catalyst under supercritical conditions, generating FAME and triacetin. In order to study the effect of the triacetin addition to FAME, its effect was investigated on various fuel characteristics. It was, consequently, discovered that there were no adverse effects on the main fuel characteristics when the molar ratio of methyl oleate to triacetin was 3:1, corresponding to the theoretically derived mole ratio from the trans-esterification reaction of rapeseed oil with methyl acetate. Moreover, the addition of triacetin to methyl oleate improved the pour point and triacetin has high oxidation stability. Therefore, by defining BDF as a mixture of methyl oleate with triacetin, we can obtain an improved yield of 105% of BDF by the supercritical methyl acetate, in excess of the yield of the conventional process.  相似文献   

20.
The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号