首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.  相似文献   

2.
The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of small mammals within Australian urban remnants.  相似文献   

3.
Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a ‘hazard quotient’ (HQM), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking.  相似文献   

4.
The Río Pilcomayo heads on the Cerro Rico de Potosí precious metal-polymetallic tin deposits of Southern Bolivia. Mining of the Potosí deposits began in 1545 and has led to the severe contamination of the Pilcomayo's water and sediments for at least 200 km downstream of the mines. This investigation addresses the potential human health affects of metal and As contamination on four communities located along the upper Río Pilcomayo by examining the potential significance of human exposure pathways associated with soils, crops and water (including river, irrigation and drinking water supplies). The most significantly contaminated agricultural soils occur upstream at Mondragón where Cd, Pb and Zn concentrations exceed recommended guideline values for agricultural use. Further downstream the degree of contamination decreases, and metal concentrations are below Dutch, German and Canadian guideline values. Metal and As concentrations in agricultural products from the four communities were generally below existing guidelines for heavy metal content in commercially-sold vegetables. Thus, the consumption of contaminated produce does not appear to represent a significant exposure pathway. A possible exception is Pb in carrots, lettuce and beetroots from Sotomayor and Tuero Chico; 37% and 55% of the samples, respectively, exceeded recommended guidelines. Most communities obtain drinking water from sources other than the Río Pilcomayo. In general, dissolved concentrations of metals and As in drinking water from the four studied communities are below the WHO guideline values with the exception of Sb, which was high at Tasapampa. The inadvertent ingestion of contaminated water from irrigation canals and the Río Pilcomayo represents a potential exposure pathway, but its significance is thought to be minimal. Given the degree of soil contamination in the area, perhaps the most significant exposure pathway is the ingestion of contaminated soil particles, particularly particles attached to, and consumed with vegetables. The risks associated with this pathway can be reduced by thoroughly washing or peeling the vegetables prior to consumption. Other exposure pathways that are currently under investigation include the consumption of contaminated meat from livestock and poultry, which drink polluted waters and the ingestion of contaminated wind-blown dust.  相似文献   

5.
Heavy metal contamination of soils resulting from mining and smelting is causing major concern due to the potential risk involved. This study was designed to investigate the heavy metal (Cu, Zn, Pb and Cd) concentrations in soils and food crops and estimate the potential health risks of metals to humans via consumption of polluted food crops grown at four villages around the Dabaoshan mine, South China. The heavy metal concentrations in paddy and garden soils exceeded the maximum allowable concentrations for Chinese agricultural soil. The paddy soil at Fandong village was heavily contaminated with Cu (703 mg kg− 1), Zn (1100 mg kg− 1), Pb (386 mg kg− 1) and Cd (5.5 mg kg− 1). Rice tended to accumulated higher Cd and Pb concentration in grain parts. The concentrations of Cd, Pb and Zn in vegetables exceeded the maximum permissible concentration in China. Taro grown at the four sampled villages accumulated high concentrations of Zn, Pb and Cd. Bio-accumulation factors for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Pb. Bio-accumulation factors of heavy metals were significantly higher for leafy than for non-leafy vegetable. The target hazard quotient (THQ) of rice at four sites varied from 0.66-0.89 for Cu, 0.48-0.60 for Zn, 1.43-1.99 for Pb, and 2.61-6.25 for Cd. Estimated daily intake (EDI) and THQs for Cd and Pb of rice and vegetables exceeded the FAO/WHO permissible limit. Heavy metal contamination of food crops grown around the mine posed a great health risk to the local population through consumption of rice and vegetables.  相似文献   

6.
The aim of the study was to determine the major source and extent of metal pollution in a residential area of Greater Calcutta. In this area approximately 50,000 people reside in the vicinity of a lead factory that produces lead ingots and lead alloys. Many people, especially children, are affected by lead toxicity. Soils, waters, road dust, leaf dust, leaves and pond sediments were sampled in and around the factory area. Aliquots of the samples were mineralized with nitric acid and hydrogen peroxide in a microwave system. Lead and 19 other elements were quantified in the digests by inductively coupled plasma mass spectrometry. The performance of the procedure was confirmed by analyzing NBS-BCR standard reference soil, leaves, sediment samples. The soils are highly contaminated not only with lead (4.7%), but also with Cd (0.08%), Ag (0.001%), Cu (0.02%), Zn (1.0%), As (1.0%), Mo (0.003%), Sn (0.003%) and Hg (0.03%) (metal concentrations given in parentheses are maximum). Moving away from the smelter, most of metal concentrations, especially Pb, As, Mo, Cu, Hg, Zn, Cd, Sn and Ag, decreased exponentially over increasing distance. In the residential areas near the smelter, notably to the west side of the factory, metal concentrations significantly breached the threshold trigger values set in India by the Central Pollution Control Board (CPCB). Particulate materials from the smelter stack appear to contaminate soils up to at least 0.5 km. However, abnormally high metal levels in the immediate smelter area may be due to primarily fugitive emissions. The surface waters are only contaminated by arsenic ranges from 0.05 to 13.5 mg/l, but the ground water is currently not polluted by lead and arsenic. An appropriate treatment plant with some intervention measures should be taken to save the locality.  相似文献   

7.
Agricultural uses of compost usually have a positive effect on the yield of vegetable crops for human consumption. However, compost that contains heavy metals can transfer these components to soils and plants. To evaluate the contamination levels of metals in soil, compost, and edible vegetables, the Mn, Zn, Pb, Cd, Cu, and Ni total contents were measured. Metal availability in soils, as well as other variables – the pH, CEC (cation exchange capacity), total nitrogen, organic carbon, particle size distribution and mineralogy of the clay fraction – were examined in the soil samples. The analysed compost samples were produced from urban solid waste, cattle manure, and edible vegetable and tree pruning residues. The values of pH, CEC, total nitrogen, organic matter, exchangeable hydrogen and carboxylic groups were measured in the compost samples. Of the six metals examined in the soils, in general, Mn and Zn attained the highest concentrations, followed by Cu. Relatively high Mn, Zn, Cu, Cd and Pb concentrations were found in the soils. Metal concentrations extracted with DTPA were below the critical levels in soils, i.e. the levels above which toxicity is likely. In general, Zn, Pb, Cd, Cu and Ni concentrations in compost were lower than those reported by other workers, while Mn levels were within the range for this metal in compost. The results showed that there was an effect of the vegetable type (p < 0.01) for all the parameters examined. High Pb concentrations were found in lettuce and chive as compared with the tolerance limit for this metal in fresh vegetables in Brazil. Cadmium concentrations were also enhanced in the fresh vegetables compared with the typical concentrations of metals in plants. Zinc, Cu, Cd, and Ni concentrations were lower than the tolerance limits established for foods by the Brazilian legislation.  相似文献   

8.
以甘肃省某铅锌冶炼厂高浓度铅(Pb)、锌(Zn)和镉(Cd)复合污染场地为对象,开展新型固化剂SPC原位固化稳定化(S/S)技术修复现场试验研究。进行含水率、p H值、浸出毒性和重金属形态分布和动力锥贯入试验,以考察修复前后污染土理化、浸出及强度特性变化,评价SPC原位S/S技术的修复效果,并初步探讨相关机制。试验结果表明SPC原位S/S技术能显著降低污染土含水率,提高其p H值;修复后Pb,Zn和Cd浸出浓度值显著降低,且均能满足相应限值要求;SPC修复能够有效降低土中重金属弱酸提取态含量,并将其转化为残渣态,同时显著提高土层贯入阻力值。提高SPC掺量可进一步增强其对污染土的修复效果。  相似文献   

9.
Drinking of arsenic (As) contaminated well water has become a serious threat to the health of many millions in Bangladesh. However, the implications of contamination of agricultural soils from long-term irrigation with As-contaminated groundwater for phyto-accumulation in food crops, and thence dietary exposure to As, and other metals, has not been assessed previously in Bangladesh. Various vegetables were sampled in Samta village in the Jessore district of Bangladesh, and screened for As, Cd, Pb, Cu and Zn by inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). These local food products are the basis of human nutrition in this region and of great relevance to human health. The results revealed that the individual vegetables containing the highest mean As concentrations microg x g(-1)) are snake gourd (0.489), ghotkol (0.446), taro (0.440), green papaya (0.389), elephant foot (0.338) and Bottle ground leaf (0.306), respectively. The As concentration in fleshy vegetable material is low. In general, the data show the potential for some vegetables to accumulate heavy metals with concentrations of Pb greater than Cd. Some vegetables such as bottle ground leaf, ghotkol, taro, eddoe and elephant foot had much higher concentrations of Pb. Other leafy and root vegetables, contained higher concentrations of Zn and Cu. Bioconcentration factors (BCF) values, based on dry weight, were below 1 for all metals. In most cases, BCF values decreased with increasing metal concentrations in the soil. From the heavily As-contaminated village in Samta, BCF values for As in ladies finger, potato, ash gourd, brinjal, green papaya, ghotkol and snake gourd were 0.001, 0.006, 0.006, 0.014, 0.030, 0.034 and 0.038, respectively. Considering the average daily intake of fresh vegetables per person per day is only 130 g, all the vegetables grown at Samta had Pb concentrations that would be a health hazard for human consumption. Although the total As in the vegetables was less than the recommended maximum intake of As, it still provides a significant additional source of As in the diet.  相似文献   

10.
An account is given of an investigation of the fertility status and heavy metal content of garden soils in England and Wales and the availability to and uptake of lead by radish generally, and by potatoes in two villages of contrasting epidemiological history. Intentional interference (i.e., cultivation) of gardens by man has resulted in a generally high level of fertility, but inadvertent additions of lead and other metals have resulted in many garden soils being contaminated. There are regional differences in fertility but not in heavy metal content. In rural areas, uncontaminated soils were associated with allotments and new gardens, and lead contamination was identified in urban and industrial areas as a result of pollution from vehicle exhausts, industry, mining and miscellaneous sources. Mature gardens in rural areas were also contaminated by lead and evidence is presented to support a hypothesis of increasing pollution with time, perhaps due to coal ash from chimneys. Radish absorbed soil lead and certain gardens produced plants the lead content of which was close to or above the legal limit of 2 mg/kg Pb. Potato was a weaker absorber of lead but plant contents still reflected lead contamination of soil. Consumption of vegetables from contaminated gardens could account for an appreciable proportion of the maximum safe daily intake of lead.  相似文献   

11.
OBJECTIVES: The objectives of the present study were to assess the relative impact of different pathways of environmental cadmium (Cd) exposure and to evaluate the contribution from locally produced vegetables and root crops to the total dietary intake of Cd. METHODS: Cadmium in urine was determined for 492 individuals living near a closed down battery factory in Sweden. For each individual we created an environmental exposure-index based on Cd emissions to ambient air and number of years living at various distances from the plant. This information as well as dietary data were collected via questionnaires. Samples of soil, carrots and/or potatoes were collected from 37 gardens and analysed for Cd concentration. RESULTS: Eating home grown vegetables/potatoes, environmental Cd-exposure-index, female gender, age above 30 years and smoking more than one pack of cigarettes daily for at least 10 years were found to be significantly associated with increased urine concentrations of Cd (UCd>1.0 nmol/mmol creatinine). We found a statistically significant relation between Cd in urine and environmental Cd-exposure-index in persons eating home grown vegetables/potatoes regularly. Cd concentrations in home grown carrots, potatoes and in garden soil were highest in the area closest to the factory. Daily consumption of potatoes and vegetables cultivated in the vicinity of the closed battery factory was estimated to increase Cd intake by 18-38%. CONCLUSION: The present study shows that consumption of locally grown vegetables and root crops was an important exposure pathway, in subjects living near a nickel-cadmium battery plant, whereas direct exposure via ambient air was less important.  相似文献   

12.
For potatoes grown in soil contaminated by Pb/Zn smelter smoke it was observed that Cd and Pb accumulated in the peel. When potatoes are baked both skin and tuber may be eaten. From an investigation of the relative contributions of peel and tuber to diet it was concluded that normally when both are eaten together there is no risk to health from ingesting excess of toxic metals.  相似文献   

13.
Mineral fertilizers are sources of diffuse metal enrichment of agricultural soils. A survey of phosphate fertilizers (blends or raw) sold on the European market was undertaken to quantify metal input via fertilizers in European agricultural soils. A total of 196 phosphate fertilizer samples from 12 European countries were analyzed for trace metals. Analytical quality was controlled with a certified rock phosphate sample. The average metal concentrations (mg kg(-1)) in the fertilizers were 14.8 (Ni), 7.4 (Cd), 166 (Zn), 2.9 (Pb), 7.6 (As), and 89.5 (Cr). The trace metal concentrations were positively correlated with the P concentrations confirming that the rock phosphate was the major source of these elements. Lowest metal concentrations were generally found in samples from Scandinavian countries. At average P use, the trace metal input via fertilizers was similar to or even larger than the metal input via atmospheric deposition in European agricultural soils for Cd, As, and Cr, whereas the reverse was true for Zn, Ni, and Pb. The input of Cd in European agricultural soils has decreased from previously estimated values and the soil Cd mass balance was close to steady state on an average basis.  相似文献   

14.
In order to evaluate the contamination of the Dornach (Switzerland) site within the framework of the CEEM-Soil project, each participating team was allowed to take a maximum of 15 samples. The French team's sampling was organized in such a way as to answer the following questions: (i) what is the natural concentration of the soils at this site (local pedo-geochemical background content)?; (ii) what are the levels of Cd, Cu, Pb and Zn contamination of the soil?; (iii) what is the depth reached by the surface contamination that is derived from atmospheric fallout?; (iv) how is the contamination spread along the longest axis of the area under study? The relationships between total Fe and the trace metals have allowed local variations in the natural pedo-geochemical background content to be detected and thus permitted the anthropogenic contamination to be estimated. There would appear to be a low level of Pb contamination over all the site investigated (an increase of the order of 5-10 mg kg(-1) on the background level), limited to the surface humus-bearing layers. There is also a significant contamination by Cu over all of the site (an increase of the order of 30-40 mg kg(-1)). This contamination has remained in the surface horizons (0-20 cm). Very high Zn and Cd concentrations have been found in the four surface (0-4 cm) and deep horizons (15-70 cm) taken under the forest and very much lower values in the samples taken from cultivated soils. The most likely explanation is an unequal inheritance between the upper part of the site (wooded with thinner very clayey soils) and the lower cultivated part of the site (with thicker less clayey soils developed in a loamy material). For various reasons, it seems unlikely that a contamination of the wooded part should be so much higher than the cultivated part due to the interception of atmospheric dust by the trees. The local pedo-geochemical background Cd and Zn content of the upper wooded part proved to be clearly higher than that which would be encountered in most soils of Switzerland and France. Given this evaluation of the background content, it seems that only the surface horizons have been affected by Zn contamination (an addition of approx. 60-100 mg kg(-1)). In the case of Cd, the increase in concentrations is only 0.5-1 mg kg(-1) for the ploughed horizons, as well as the for the A horizons.  相似文献   

15.
In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical-chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg(-1), respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg(-1) in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg(-1) for Cd and 9 mg kg(-1) for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem, and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.  相似文献   

16.
The collapse of the tailing dam in the Aznalcóllar pyrite mine (SW Spain) occurred in April 1998 and affected approximately 4300 ha along the Agrio and Guadiamar valleys. An urgent soil cleaning up and remediation programme was started just after the accident. Eighteen months later, mineral nutrients and trace elements concentration in soil and two wild grasses--Cynodon dactylon and Sorghum halepense--have been studied. Three types of conditions are distinguished: (a) unaffected soils (control); (b) cleaned up and remediated soils (remediated); and (c) sludge-covered soils left in a fenced plot (non-remediated). As, Cd, Cu and Pb in grasses reached toxic levels for the food web in the non-remediated plot, while on remediated soils only Cd reached a toxic level in grass tissues. However, Pb and, to a lesser extent As and Fe, reached also toxic levels in unwashed plants (as they would be ingested by animals) in remediated soils. Both native grasses seem tolerant of trace elements pollution and suitable for stabilisation of spill-affected soils.  相似文献   

17.
The atmospheric pollution history of a former Belgian Zn-smelter complex is preserved in organic sediments of a nearby peat bog pool. The stratigraphy of trace metals, Pb-isotope ratios and mineralogy indicate extreme heavy metal pollution in recent sediments. In the pollutant trend, extremes coincide with maxima in 20th century metal production, minima during major war conflicts and the final shutdown of the smelter. Peak pollution concentrations measure up to 4.7 wt.% Zn, 1.1 wt.% Pb and 0.1 wt.% Cd, which correspond to calculated atmospheric deposition rates of 9.0, 1.6 and 0.16 g m(-2) yr(-1), respectively. 206Pb/207Pb isotope ratios show higher values in the polluted interval (1.135-1.162) relative to local geogenic values deeper down-core (1.194-1.215). Within the polluted interval, three significantly different 208Pb/206Pb plateaus are recognized and suggested to indicate changes in the origins of processed ores. Microprobe analyses on sediment thin sections show extensive in situ FeS2 and ZnS precipitation, which suggests that anoxic processes are responsible for the immobilization of the atmospheric metal inputs. The occurrence of oxidized smelter dusts in an independent surface soil sample indicates a rapid diagenetic transformation of metal oxides into sulfides. Morphology and chemical characteristics allow the distinction between smelter related and diagenetic mineral deposits, and give evidence for dust from open-air ore repositories, as well as smelter operation without dust filters.  相似文献   

18.
The major route of exposure of humans to the toxic element cadmium (Cd) is via the consumption of vegetables homegrown on Cd contaminated soil. It is well known that soil pH is one of the main soil properties controlling bioavailability of Cd in plants. This is acknowledged in human health risk assessment models that incorporate pH dependant concentration factors (CF=plant Cd/soil Cd). However, variation in spatial heterogeneity of nutrients and heavy metals in soil can have a profound effect on plant performance and uptake of nutrients and heavy metals. Here we show for lettuce (variety Crispino) that variation in plant-scale heterogeneity of Cd in soil affects bioavailability and hence CF by a factor of 2. Plant yield is also significantly affected. This has important implications for both human health risk assessment, as variation in CF affects predicted exposure, and for phytoremediation where an optimal combination of plant yield and contaminant accumulation is required.  相似文献   

19.
Heavy metal contamination in the street dust due to metal smelting in the industrial district of Huludao city was investigated. Spatial distribution of Hg, Pb, Cd, Zn and Cu in the street dust was elucidated. Meanwhile, noncancer effect and cancer effect of children and adults due to exposure to the street dust were estimated. The maximum Hg, Pb, Cd, Zn and Cu contents in the street dust are 5.212, 3903, 726.2, 79,869, and 1532 mg kg− 1, and respectively 141, 181, 6724, 1257 and 77.4 times as high as the background values in soil. The trends for Hg, Pb, Cd, Zn and Cu are similar with higher concentrations trending Huludao zinc plant (HZP). The exponential equation fits quite well for the variations of Pb, Cd, Zn and Cu contents with distance from the pollution sources, but not for Hg. The biggest contribution to street dust is atmospheric deposition due to metal smelting, but traffic density makes slight contribution to heavy metal contamination. According to the calculation on Hazard Index (HI), in the case of noncancer effect, the ingestion of dust particles of children and adults in Huludao city appears to be the route of exposure to street dust that results in a higher risk for heavy metals, followed by dermal contact. The inhalation of resuspended particles through the mouth and nose is almost negligible. The inhalation of Hg vapour as the fourth exposure pathway to street dust is accounting for the main exposure. Children are experiencing the potential health risk due to HI for Pb larger than safe level (1) and Cd close to 1. Besides, cancer risk of Cd due to inhalation exposure is low.  相似文献   

20.
Plants grown in lead contaminated soils can accumulate lead from the adherence of dust and translocation into the plant tissue. In order to evaluate the potential health hazard due to the consumption of plants grown in residential gardens contaminated by lead, a survey of the lead concentrations in a typical array of edible vegetables, fruits and herbs was conducted. Samples of garden plants harvested from the field were washed with detergent or water alone to remove adhered soil. They were dried, separated into sections including root, shoot and edible fruit, and then analyzed for lead content using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Soil samples, taken in conjunction with the plant harvesting, were analyzed using flame atomic absorbance (FAA). A pattern of lead transference from soil through the root to the stem and leaves of garden crops was found. The majority of the lead was concentrated in the roots (root:soil ranging from 0.02 to 0.51), with some translocation into the shoots (shoot:soil as high as 0.10). This pattern is a concern particularly for crops in which the root, stems, stalks or leaves are edible. The lead concentration in fruiting vegetables was less than the detection limit of 10 ppm (microgram lead/gram dry plant matter). Some edible portions of the leafy vegetables and herbs, however, were found to have lead levels that, if consumed, could contribute to the total body burden of lead. Therefore, urban gardeners should test the lead levels in their soils and develop strategies to ensure safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号