首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The melting and crystallization behaviors of poly(trimethylene terephthalate) (PTT)/acrylonitrile–butadiene–styrene (ABS) blends were investigated with and without epoxy or styrene–butadiene–maleic anhydride copolymer (SBM) as a reactive compatibilizer. The existence of two separate composition-dependent glass-transition temperatures (Tg's) indicated that PTT was partially miscible with ABS over the entire composition range. The melting temperature of the PTT phase in the blends was also composition dependent and shifted to lower temperatures with increasing ABS content. Both the cold crystallization temperature and Tg of the PTT phase moved to higher temperatures in the presence of compatibilizers, which indicated their compatibilization effects on the blends. A crystallization exotherm of the PTT phase was noticed for all of the PTT/ABS blends. The crystallization behaviors were completely different at low and high ABS contents. When ABS was 0–50 wt %, the crystallization process of PTT shifted slightly to higher temperatures as the ABS content was increased. When ABS was 60 wt % or greater, PTT showed fractionated crystallization. The effects of both the epoxy and SBM compatibilizers on the crystallization of PTT were content dependent. At a lower contents of 1–3 wt % epoxy or 1 wt % SBM, the crystallization was retarded, whereas at a higher content of 5 wt %, the crystallization was accelerated. The crystallization kinetics were analyzed with a modified Avrami equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Abstract

Simulations of the injection stretch–blow moulding process have been developed for the manufacture of poly(ethylene terephthalate) bottles using the commercial finite element package ABAQUS/standard. Initially a simulation of the manufacture of a 330 mL bottle was developed with three different material models (hyperelastic, creep, and a non-linear viscoelastic model (Buckley model)) to ascertain their suitability for modelling poly(ethylene terephthalate). The Buckley model was found to give results for the sidewall thickness that matched best with those measured from bottles off the production line. Following the investigation of the material models, the Buckley model was chosen to conduct a three-dimensional simulation of the manufacture of a 2 L bottle. It was found that the model was also capable of predicting the wall thickness distribution accurately for this bottle. In the development of the three-dimensional simulation a novel approach, which uses an axisymmetric model until the material reaches the petaloid base, was developed. This resulted in substantial savings in computing time.  相似文献   

3.
Electrospinning has the inherent advantage of being able to achieve molecular mixing of polymers having substantially different melting points. Electrospun poly(ɛ-caprolactone)–poly(ethylene terephthalate) (PCL:PET) capsules are densified by sintering to enable drug encapsulation. Proton and diffusive nuclear magnetic resonance, as well as a selective dissolution, suggest an absence of reaction between the two polymers. Sintering at 100 °C successfully densifies 88.89:11.11 and 75:25 PCL:PET blends. Following sintering, the otherwise dense 75:25 composition retains electrospun features and exhibits some “memory” of its previous state. Sintering increases UTS approximately eightfold versus as-spun values for 88.89:11.11 and 75:25. Elongation increases sixfold and twofold and modulus 44- and 69-fold for the 75:25 and 88.89:11.11 samples, respectively. Differential scanning calorimetry suggests a postsintering structure of nanoscale PET dispersed in PCL along the original fiber directions. Selective PCL removal from dense blends shows that fibrous characteristics remain. An internal shish–kebab-like structure is also present in as-spun 75:25 PCL:PET. Water absorption of hydrophobic oil-containing capsules is approximately zero after 49 days. In contrast, hydrophilic (HPI) oils allow substantial water uptake. Unsurprisingly, there is no release of a model drug from the hydrophobic carrier. HPI oil provides linear (zero-order) release inversely proportional to PET from the 88.89:11.11 and 75:25 ratios. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47731.  相似文献   

4.
A series of poly(urethane-urea)/clay nanocomposite coatings were prepared by moisture curing of isophorone diisocyanate (IPDI) capped hydroxyl terminated polybutadiene (HTPB)/clay dispersions in a relative humidity (RH) of 50% at 25 °C. The curing progress was studied by periodic measurement of gel fraction of the coating samples. The studies revealed tortuosity effects of clay toward moisture diffusion, thus delaying the induction period of gelation, time for complete cure and rate of gel formation of the nanocomposite coatings. The clay platelets were found to be intercalated in the poly(urethane-urea) matrix, evidenced from wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Effects of nanoclay on state of the hard and soft segments were investigated by WAXD, differential scanning calorimetry (DSC), temperature modulated DSC (MDSC) and solid-state nuclear magnetic resonance spectroscopy (NMR). WAXD studies revealed unusually ordered hard segment morphology of the moisture cured poly(urethane-urea) and its nanocomposites. Slower soft segment dynamics upon clay addition was evident from concentration dependant broadening of the line widths of the NMR peaks, and decreasing reversible heat capacity changes at soft segment glass transition. The volume fraction of immobilized soft segments of the nanocomposites was determined from MDSC and was found to increase linearly with clay loading. The mechanical property analysis showed simultaneous reinforcement and toughening effect of nanoclay on the MCPU matrix. The increment in mechanical property of the nanocomposites varied proportionately with the volume fraction of immobilized soft segments.  相似文献   

5.
The influence of different shear stresses induced by changing injection molding speeds on molecular chain orientation and lamellar branching of β-nucleated iPP/poly(ethylene terephthalate) (PET) microparts was investigated using two-dimensional wide-angle X-ray diffraction and 2D-small-angle X-ray scattering. Results indicated that the prevailing shear stress can promote the formation of parent–daughter α-crystal structure and twisted shish–kebab structure in subsequent microparts. The diffraction of (300) plane of β-crystals was also observed at varying injection speeds. Increasing injection speeds can significantly enhance the content of β-crystals from 24 to 41% for β-nucleated iPP microparts. Additionally, the content of β-crystals was further enhanced in β-nucleated iPP/PET microparts with in situ formation of PET microfibrils under intensive shearing conditions. The addition of both PET and β-nucleation agents coupling with high shearing conditions exerts a synergetic effect on the development of β-crystals. However, the orientation degree of crystal lattice decreased with increasing injection speeds for both β-nucleated iPP and iPP/PET microparts.  相似文献   

6.
Adding nanofillers Cloisite 30B (C30B) and Cloisite 15A (C15A) to poly(ethylene terephthalate) (PET)/poly(ε-caprolactone) (PCL) (70/30, wt/wt) blends via melt blending can improve their phase morphology and change their interface properties. The effects of the different selective localization of clay on the structure and the morphologies are studied and evaluated by theoretical and experimental methods. It is found that C30B is selectively localized in PET and at the PET-PCL interface, whereas C15A is mainly localized at the interface. Moreover, the changes in the rheological behavior of the blends are attributed to the formation of clay network-like structures. X-ray diffraction, scanning electron microscope, and transmission electron micrograph observations also evidenced an exfoliated and/or intercalated structure of C30B, and intercalated structure of C15A in the blend, together with significant morphology changes of the initially immiscible blend. The relative permeability to PET/PCL of the nanocomposites decreased with the increasing of nanoclays content. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48812.  相似文献   

7.
The use of organic compounds as thermal stabilizers for poly(vinyl chloride) (PVC) stabilization is the current state of art worldwide owing to their high efficiency and nontoxic residues after degradation. Terephthalamide, N,N′-dimethylterephthalamide and N,N′-dibutylterephthalamide have been prepared via depolymerization of poly(ethylene terephthalate) through an economical and environmentally friendly approach. These compounds have been examined as thermal stabilizers for PVC formulations and found to exhibit high thermal stabilizing effects. Thermal stability measurements were performed using conventional Congo red test method. Color change experiments were conducted by heating the samples at 200 °C in air, and the colored compounds formed were extracted and compared with the help of UV–visible spectroscopy. Fourier transform infrared spectroscopic studies of organic terephthalamides incorporated PVC samples have been performed in order to insight the probable mechanistic aspects involved in thermal stabilization process. Thermogravimetric analysis (TGA) thermograms of PVC sheets loaded with 10 wt % organic terephthalamides have been recorded and were found stable below 200 °C. SEM and energy dispersive X-ray analysis of char residues of TGA samples were performed supporting the proposed thermal stabilizing action of the organic terephthalamides. Furthermore, specific gravity and mechanical performance of the PVC sheets have also been reported assisting in finding suitable commercial applications of PVC formulations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48022.  相似文献   

8.
A series of novel poly(1,4-cyclohexanedimthylene terephthalate-co-1,4-cyclohxylenedimethylene 2,6-naphthalenedicarboxylate) (PCTN) copolyesters were successfully melt polymerized using different content of trans- or cis-isomers. Before evaluations, the performance properties, their actual chemical composition, chemical structure, and molecular weight were determined using proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), and intrinsic viscosity (IV) measurements. Thermal studies of obtained copolyesters were carried out using differential scanning calorimetry (DSC). Thermal degradation behaviors were analyzed by thermogravimetric analysis (TGA). Randomly oriented film specimens were developed using a hot-press and their thermal, barrier, dimensional stability, and optical properties were analyzed and compared with conventional poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN). The results revealed that glass transition temperature (Tg), melting temperature (Tm), and crystallinity (Xc) of the synthesized copolyesters are increased in a linear trend by increasing the trans-1,4-cyclohexanedimethanol (trans-CHDM) isomers. It was also found that synthesized films had better thermal, barrier, optical, and dimensional stability properties than conventional PET and PEN films. Results clearly indicated that high trans-CHDM isomers significantly improve the performance properties of the fabricated films. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48950.  相似文献   

9.
In this study, we prepared ternary poly(ethylene terephthalate) (PET)–nitrile butadiene rubber (NBR)–polycarbonate (PC) blends through a molten mixing procedure, and with a corotating extruder, we studied the morphology and thermodynamic properties of each purified polymer and the binary and ternary blends with different compositions. Dynamic mechanical analysis of both the PET–PC and PET–NBR samples showed individual loss peaks for each component, but in different ternary samples, the effects of different percentages of components (PC–PC and PET–NBR) were observed; this revealed changes in the loss peak locations. Individual loss peaks of PET and PC in the ternary PET–NBR–PC blends (81/9/10 and 63/30/7)—proof of the miscibility of the samples—were also observed in this study. The thermal properties of the samples were measured and examined with the thermogravimetric analysis and differential thermogravimetry testing methods. The activation energy and order of reaction values for the samples under an air atmosphere with single-rate methods of heating were studied. Finally, the relation between the type of morphology and the thermal degradation behavior was investigated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47171.  相似文献   

10.
Non-isothermal crystallization behavior of poly(vinylidene fluoride) (PVDF) and ethylene–vinyl acetate (EVA) copolymer and their binary blends with different blending ratios were investigated by the use of differential scanning calorimetry (DSC). With the increasing cooling rates, PVDF, EVA and their binary blends showed wide crystallization temperature range and high crystalline enthalpy. Jeziorny and Mo’s models were applied to calculate non-isothermal crystallization kinetics parameters of neat PVDF, EVA and their binary blends. By Jeziorny method, the crystallization process of neat PVDF, EVA and PVDF/EVA = 7/3 blend can be divided into two parts: primary and secondary crystallization processes. The Avrami exponent n 1 indicated that the primary crystallization process was a mixture model of three-dimensional and two-dimensional space extensions. In comparison, PVDF/EVA = 5/5 and PVDF/EVA = 3/7 blends showed a single crystallization process. Through Mo’s analysis, faster cooling rate was demanded to reach higher relative crystallinity. Crystallization rate coefficient (CRC) was used to describe the effect of crystallization rates on the interaction between PVDF and EVA. CRC reached a maximum value when the mass ratio of PVDF and EVA was 7/3. The maximum CRC values of PVDF system and EVA system were 98.1 and 179.9 h?1, respectively. The activation energy was closely related to the extent of conversion and the neat samples had a maximum value of crystallization activation energy. This was consistent with the observation for the parameters from Jeziorny analysis and could be correlated to the heterogeneous nucleation.  相似文献   

11.
β-Nucleated polypropylene (PP), uncompatibilized β-nucleated PP/poly(trimethylene terephthalate) (PTT), β-nucleated PP/PTT blends compatibilized with maleic anhydride (MA)-grafted PP (PP-g-MA), and styrene–ethylene–propylene copolymer were prepared with a twin-screw extruder. The morphology, compatibility, crystallization characteristic, melting behavior, and crystallization kinetics were investigated. The result shows that β-nucleated PP was incompatible with PTT, and the addition of the two compatibilizers decreased the interfacial tension between β-nucleated PP and PTT; this led to improved dispersion and strengthened interfacial bonding in the blends. PP-g-MA had a better compatibilization effect. All of the researched β-nucleated PP/PTT blends contained β crystals of PP, and the compatibilizers exhibited synergistic effects with the β-nucleating agent to further increase the content of β crystals. Nonisothermal kinetic analysis indicated that Mo's method described the nonisothermal crystallization behavior of the β-nucleated PP/PTT blends satisfactorily, and the Avrami approach could only describe the early stage of the crystallization appropriately, whereas the Ozawa method failed to have the same effect. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Abstract

Microstructural evolution in poly(ethylene terephthalate) during a stretch– blow process has an important influence on the final mechanical prop erties. To obtain information other than thickness distributions from numerical simulations of the blow moulding process, it is necessary to take into account the evolution of these characteristics (molecular orientation, crystallinity, etc). Numerical simulations of top loading tests at ambient temperature have been carried out on bottles and compared with experimental results. Good agreement was obtained if appropriate anisotropic moduli were used. In the present paper, results of tensile measurements made on stretch–blow moulded samples and experimental tensile tests on poly(ethylene terephthalate) specimens are presented. The influence of draw ratio, temperature, and elongational strain rate on the final strength of the bottle are analysed. A correlation between the mechanical characteristics and the induced crystallinity is demonstrated and used to predict mechanical characteristics at different locations on the bottle.  相似文献   

13.
To enhance the compatibility of poly(ethylene terephthalate) (PET)/liquid crystalline polymer (LCP) composite, thereby mechanically strengthening the PET matrix, an optimally compatibilized composite of chain-extended and -carboxylated PET ionomer and poly(4-hydroxybenzoic acid–ran–6-hydroxy-2-naphthoic acid) (HBA–HNA) was successfully prepared. Upon PET carboxylated chain extension with pyromellitic dianhydride and subsequent ionization with Zn(OH)2, the compatibility of the composite was distinctly improved, as verified by the refined dispersed-phase morphology, increased number of refined HBA–HNA fibrils, reduced crystallinity, and improved complex viscosity. Compared with PET, the optimally compatibilized composite displayed a 70.1 and 148.7% increase in Young's modulus and tensile strength, respectively. Tentatively mechanistically, the interfacial interaction may change from weak hydrogen bonding to strong ion–dipole interactions due to the introduction of ionic groups, which remarkably boosts the interfacial compatibility, thereby achieving synergistic effects of the ionization and HBA–HNA inclusion to maximally strengthen PET. It seems that the synergistic ionization/LCP inclusion by a one-pot method establishes a promising preparation approach to commercial PET engineering resins.  相似文献   

14.
It is well known that application of a coupling agent to a glass fiber surface will improve fiber/matrix adhesion in composites. However, on commercial glass fibers the coupling agent forms only a small fraction of the coating, the larger part being a mixture of processing aids whose contribution to composite properties is not well defined. The interfacial region of the composite will therefore be affected by the coating composition but also by the chemical reactions involved in the vicinity of the fiber and inside the surrounding matrix. The main feature of this study consists in dividing the interface region into two separate regions: the fiber/sizing interphase and the sizing/matrix interphase. A wide range of techniques was used, including mechanical and thermomechanical tests, infrared spectroscopy, gel permeation chromatography, carboxyl end group titrations, extraction rate measurements, and viscosity analysis. Experiments were performed on poly(butylene terephthalate) composites and results indicate that the adhesion improvement is due to the presence of a short chain coupling agent and of a polyfunctional additive, which may react both with the coupling agent and the matrix. According to the nature of this additive, it may be possible to soften the interphase and then to increase the composite impact strength.  相似文献   

15.
《Polymer》2014,55(26):6686-6695
To improve the form-stability and lower the degradation rate of poly(trimethylene carbonate) (PTMC) in biomedical fields, the cross-linked PTMC networks (PTMC-Ns) with controllable properties were prepared via chemical cross-linking. We report higher gel percentage and lower swelling degree as well as enhanced thermal and mechanical properties of the PTMC-Ns by increasing the initial molecular weight and by increasing the cross-linker amount. The PTMC-Ns cross-linked by bis(trimethylene carbonate) (BTB) had similar properties to that of counterparts cross-linked by 2, 2-bis(ε-CL-4-yl)-propane (BCP), indicating that BTB can be used interchangeably with BCP. Through in vitro enzymatic degradation, the 0.05 mol% BTB cross-linked PTMC with an initial molecular weight of 256 kDa displayed a mass loss of 34% and an erosion rate of 6.94 μm/d after 12 weeks—this was markedly slower than that of the uncross-linked samples. The PTMC-Ns have potential as biomedical implants because of their better form-stability and lower erosion rate than that of PTMC.  相似文献   

16.
We report the foul release characteristics of model poly(dimethylsiloxane–urethane–urea) (PDMSPU)-based coatings with a relatively lower hard segment content of 9 to 13.7 wt%. The PDMSPUs were prepared by facile moisture curing of isophorone diisocyanate-capped hydroxyalkyl-terminated PDMS. The surface free energies of the coatings were tuned (20–25 mJ/m2) by varying the hard segment content to be in the minimum adhesive regime (20–30 mJ/m2) of Baier’s curve pertaining to the relative amount of biofouling vs the critical surface tension of various chemical substrates. A series of complimentary analytical tools, namely 1H NMR spectroscopy, small-angle x-ray scattering (SAXS), FTIR-attenuated total reflectance spectroscopy (FTIR-ATR), contact angle goniometry, marine field tests, and quantitative biofouling adhesion in shear, have been employed to deduce several physicochemical parameters of importance to establish the structure property correlations. Further, the time-dependant changes in surface wettability and surface concentration of polar functional groups of the coatings (immersed in 3.5 wt% aqueous solution of NaCl) were investigated by FTIR-ATR and contact angle goniometry. The extent of surface restructuring was found to increase with increasing hard segment content of the PDMSPUs and consequently increasing attachment strengths of macrofoulants with the coatings, which were in the range 0.12–0.5 MPa.  相似文献   

17.
The effects of blend weight ratio and polyester block length of methoxy poly(ethylene glycol)-b-poly( d, l-lactide) (MPEG- b-PDLL)/methoxy poly(ethylene glycol)- b-poly(ϵ-caprolactone) (MPEG- b-PCL) blends on nanoparticle characteristics and drug release behaviors were evaluated. The blend nanoparticles were prepared by nanoprecipitation method for controlled release of a poorly water-soluble model drug, indomethacin. The drug-loaded nanoparticles were nearly spherical in shape. The particle size and drug loading efficiency slightly decreased with increasing MPEG- b-PCL blend weight ratio. Two distinct thermal decomposition steps from thermogravimetric analysis suggested different blend weight ratios. Thermal transition changes from differential scanning calorimetry revealed miscible blending between MPEG- b-PDLL and MPEG- b-PCL in an amorphous phase. An in vitro drug release study demonstrated that the drug release behaviors depended upon the PDLL block length and the blend weight ratios but not on PCL block length.  相似文献   

18.
With the advance of the thermoplastic plastic elastomer (TPE) technology, there are growing interest and needs for using these materials in the meltblowing process where benefits of small fiber diameters of meltblowns can be combined with rubber-like elastic properties of elastomers. Performances and utilities of wide ranges of meltblown products such as facemask, medical barrier, wound-care, diaper can be drastically improved with additions of TPE. In this study, a new elastomeric meltblown fabric was successfully made with the styrene–ethylene/butylene–styrene (SEBS) block copolymer, and the relationship among structure, tensile properties, and meltblowing process parameters are studied. We found that median fiber diameter increases with the polymer mass throughout and decreases with air pressure, and fabric solidity has significantly influenced by die collector distance (DCD). The pore sizes of the fabrics are directly influenced by fiber diameters at the given DCD, but higher DCD increases the pore size due to their open structures. All SEBS nonwovens exhibit high strain at break, larger than 400%. Processing parameters significantly affect tensile properties, and this can be attributed to the fabric structure changes. The reduction of fiber diameter tends to increase the tensile strength of the fabric as it created more fiber-to-fiber bond points.  相似文献   

19.
Novel series of poly (CL–co–Pluronic) polymers were successfully synthesized in situ by ring-opening polymerization (ROP) of ε-caprolactam (ε-CL). The copolymerization was activated by new type macroactivators (MAs) based on hydroxyl-terminated poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) [PEO-PPO-PEO] triblock copolymers, known under the trade name Pluronic®. Toluene-2,4-diisocyanate (TDI) was used to obtain the isocyanate-terminated Pluronic prepolymers. The corresponding MAs were synthesized in situ with an N-carbamoyllactam structure. As an initiator of the copolymerization processes was used sodium lactamate (NaCL). To confirm the influence over the copolymerization process, microstructure, composition and molecular weight of the polymeric products two new types MAs based on Pluronic (P123 and F68) have been varied from 2 to 10 wt.% (vs. the monomer ε-CL). The structure of the both Pluronic based macroactivators (MAs) and accordingly obtained two series poly (CL-co-Pluronic) polymers were confirmed by 1H NMR and FT-IR analyses. Additionally, the structure, molecular weight, physicomechanical behavior, thermal stability and morphology of the new synthesized poly (CL–co–Pluronic) polymers have been investigated by Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) analysis.  相似文献   

20.
This paper deals with the structure–property relation of different HBPU coatings based on the variation of parameters like, NCO/OH ratio, generation number and type of diisocyanates used. For this, the NCO terminated HBPU prepolymers were synthesized first by reacting the different generation hyperbranched polyesters (HBPs) with excess diisocyanates. In the next step, these HBPU prepolymer coated films were completely moisture cured to get the desired HBPU coatings. The synthesized polymers were confirmed by 1H, 13C NMR and FT-IR spectroscopy methods whereas structure–property relation was drawn from the FT-IR peak deconvolution technique. The degree of branching (DB) and percent composition of different structural units present in the HBPs were calculated from the 1H and 13C NMR data by using Fretch equation. The melt viscosity study of different HBP samples suggests that most polyester sample showed Newtonian behavior. The coating film properties were studied by DMTA, TGA, UTM, and contact angle measurement instruments. DMTA and TGA data shows that the increase of NCO/OH ratio and generation number had a favorable impact on storage modulus (E′), glass transition temperature (Tg), onset degradation temperature (T1ON) and char residue values of the coatings. The contact angle and UTM data suggest that the hydrophobicity and tensile strength increases but flexibility decreases with increasing the NCO/OH ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号