首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless sensor networks (WSNs) have significant potential in many application domains, ranging from precision agriculture and animal welfare to home and office automation. Although sensor network deployments have only begun to appear, the industry still awaits the maturing of this technology to realize its full benefits. The main constraints to large‐scale commercial adoption of WSN have been the lack of available network management and control tools, such as for determining the degree of data aggregation prior to transforming it into useful information, localizing the sensors accurately so that timely emergency actions can be taken at an exact location, routing data by reducing sensor energy consumption, and scheduling data packets so that data are sent according to their priority and fairness. Moreover, to the best of our knowledge, no integrated network management solution comprising efficient localization, data scheduling, routing, and data aggregation approaches exists in the literature for a large‐scale WSN. Thus, we introduce an integrated network management framework comprising sensor localization, routing, data scheduling, and data aggregation for a large‐scale WSN. Experimental results show that the proposed framework outperforms an existing approach that comprises only localization and routing protocols in terms of localization energy consumption, localization error, end‐to‐end delay, packet loss ratio, and network energy consumption. Moreover, the proposed WSN management framework has potential in building a future “Internet of Things”. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
传感器网络数据融合层的研究与设计   总被引:3,自引:0,他引:3  
节约能源是传感器网络面临的一个核心问题。针对传感器网络中数据冗余度较高的特点,设计了在传感器网络协议栈中建立数据融合层,通过减少网络中的数据包传输数目,达到降低网络能耗、延长网络生存时间的目的。并在传感器网络操作系统TinyOS上对数据融合层进行了实现。最后通过性能分析,验证了数据融合层的功效。  相似文献   

3.
In a static wireless sensor network (WSN), sensors close to the base station (BS) run out of energy at a much faster rate than sensors in other parts of the network. This is because the sensor close to the BS always relays the data for other sensors, resulting in an unequal distribution of network residual energy. In this paper, we propose a scheme for enhancing the network lifetime using multiple mobile cluster heads (CHs) that can move in the WSN in a controllable manner. The CH controllably moves toward the energy‐rich sensors or the event area, offering the benefits of maintaining the remaining energy more evenly, or eliminating multihop transmission. Therefore, the proposed scheme increases the network lifetime. We theoretically analyze the energy consumption in our scheme and propose three heuristical mobility strategies. We further study the collaboration among CHs in order to maintain their connectivity to the BS to ensure the delay requirement for real‐time applications. Simulation shows that network lifetime is increased by upto 75% over existing approach by making CHs always move toward a stable equilibrium point. Our connectivity algorithm provides a best case improvement of 40% in transmission delays over existing schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Wireless sensor networks (WSNs) have been vastly employed in the collection and transmission of data via wireless networks. This type of network is nowadays used in many applications for surveillance activities in various environments due to its low cost and easy communications. In these networks, the sensors use a limited power source which after its depletion, since it is non‐renewable, network lifetime ends. Due to the weaknesses in sensor nodes, they are vulnerable to many threats. One notable attack threating WSN is Denial of Sleep (DoS). DoS attacks denotes the loss of energy in these sensors by keeping the nodes from going into sleep and energy‐saving mode. In this paper, the Abnormal Sensor Detection Accuracy (ASDA‐RSA) method is utilized to counteract DoS attacks to reducing the amount of energy consumed. The ASDA‐RSA schema in this paper consists of two phases to enhancement security in the WSNs. In the first phase, a clustering approach based on energy and distance is used to select the proper cluster head and in the second phase, the RSA cryptography algorithm and interlock protocol are used here along with an authentication method, to prevent DoS attacks. Moreover, ASDA‐RSA method is evaluated here via extensive simulations carried out in NS‐2. The simulation results indicate that the WSN network performance metrics are improved in terms of average throughput, Packet Delivery Ratio (PDR), network lifetime, detection ratio, and average residual energy.  相似文献   

5.
A wireless sensor network (WSN) is a network of tiny sensors deployed to collect data. These sensors are powered with batteries that have limited power. Recharging and/or replacement of these batteries, however, are not always feasible. Over the past few years, WSN applications are being deployed in diverse fields such as military, manufacturing, healthcare, agriculture, and so on. With the ever-increasing applications of WSNs, improving the energy efficiency of the WSNs still remains to be a challenge. Applying fuzzy logic to the problem of clustering exploits the uncertainty associated with the factors that affect the lifetime of these sensors and enables the development of models that would improve their performance in real-world applications. We present a comprehensive review of various fuzzy-based techniques for clustering in WSNs whose main goal is to optimize energy usage in WSNs while simultaneously improving their overall performance.  相似文献   

6.
Node localization is essential to wireless sensor networks (WSN) and its applications. In this paper, we propose a particle swarm optimization (PSO) based localization algorithm (PLA) for WSNs with one or more mobile anchors. In PLA, each mobile anchor broadcasts beacons periodically, and sensor nodes locate themselves upon the receipt of multiple such messages. PLA does not require anchors to move along an optimized or a pre‐determined path. This property makes it suitable for WSN applications in which data‐collection and network management are undertaken by mobile data sinks with known locations. To the best of our knowledge, this is the first time that PSO is used in range‐free localization in a WSN with mobile anchors. We further derive the upper bound on the localization error using Centroid method and PLA. Simulation results show that PLA can achieve high performance in various scenarios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Coalition is an essential mechanism in the multi‐agent systems in the research of task‐oriented area. Self‐interested agents coordinate their behaviors in a coalition to pursue a common goal and obtain payoffs. We propose the clustering‐based coalition formation and self‐adjustment mechanisms for tasks in the wireless sensor network. Before coalition formation, the management center clusters attributes of sensors to reduce the scale of searching space during coalition formation. And then an improved MAX–MIN ant colony optimization algorithm is adopted to resolve the problem of coalition formation. If a coalition member fails to fulfill a task, it can sponsor a negotiation with some noncoalition nodes to execute coalition self‐repairing autonomously. The stimulus‐response mechanism of wasp colony is introduced to determine the probability of response to the task invitation to avoid consuming extra energy. Simulation results show that our model efficiently reduces energy consumption and network traffic, decreases the number of dead nodes, and prolongs the lifetime of the networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Energy balancing is an effective technique in enhancing the lifetime of a wireless sensor network (WSN). Specifically, balancing the energy consumption among sensors can prevent losing some critical sensors prematurely due to energy exhaustion so that the WSN's coverage can be maintained. However, the heterogeneous hostile operating conditions—different transmission distances, varying fading environments, and distinct residual energy levels—have made energy balancing a highly challenging task. A key issue in energy balancing is to maintain a certain level of energy fairness in the whole WSN. To achieve energy fairness, the transmission load should be allocated among sensors such that, regardless of a sensor's working conditions, no sensor node should be unfairly overburdened. In this paper, we model the transmission load assignment in WSN as a game. With our novel utility function that can capture realistic sensors’ behaviors, we have derived the Nash equilibrium (NE) of the energy balancing game. Most importantly, under the NE, while each sensor can maximize its own payoff, the global objective of energy balancing can also be achieved. Moreover, by incorporating a penalty mechanism, the delivery rate and delay constraints imposed by the WSN application can be satisfied. Through extensive simulations, our game theoretic approach is shown to be effective in that adequate energy balancing is achieved and, consequently, network lifetime is significantly enhanced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Hierarchical routing and clustering mechanisms in Wireless Sensor Networks (WSN) help to reduce the energy consumptions and the overhead created when all the sensor nodes in the network are sending information to the central data collection point. Most of the routing and clustering protocols proposed for WSN assume that the nodes are stationary. However, in applications like habitat monitoring or search and rescue, that assumption makes those clustering mechanisms invalid, since the static nature of sensors is not real. In this paper, we propose Zone-based Routing Protocol for Mobile Sensor Networks (ZoroMSN) that considers the design aspects such as mobility of sensors, zones and routes maintenance, information update and communication between sensor nodes. Simulation results show the effectiveness and strengths of the ZoroMSN protocol such as a low routing and mobility overhead, while achieving a good performance in WSN using small zone sizes and sensors with low speed. Simulation results also show that ZoroMSN outperforms existing LEACH-ME and LEACH-M protocols in terms of network lifetime and energy consumptions.  相似文献   

10.
Wireless sensor networks have been widely used in many applications, such as soil temperature monitoring for plant growth and abnormal event detection of industrial parameters. Among these applications, aggregate queries, such as SUM, COUNT, AVERAGE, MIN and MAX are often used to collect statistical data. Due to the low quality sensing devices or random environmental disturbances, sensor data are often noisy. Hence, the idea of moving average, which computes the average over consecutive aggregate data, is introduced to offset the effect. The high link loss rate, however, makes the result after averaging still inaccurate. To address this issue, we propose a PCM-based data transmission scheme to “make up” the possibly lost data. Specifically, we focus on obtaining robust aggregate results under high link loss rate. In order to reduce the communication traffic that dominates the energy consumption of the sensor network, we also design an intelligent path selection algorithm for our scheme. Our extensive simulation results have shown that this technique outperforms its counterparts under various sensor network conditions.  相似文献   

11.
Clustering is one of the essential operations in wireless sensor network (WSN) to ensure organized data aggregation followed by energy efficiency. However, obtaining optimal clustering performance is yet an unsolved problem in WSN. Review of existing approaches towards cluster optimization shows that effective balance between energy efficiency and topology control is still missing. Therefore, the proposed system presents a unique topology control mechanism using a novel concept of interstellar orientation toward optimizing the clustering performance in WSN. Adopting an analytical research methodology, the proposed system introduces two interstellar‐based topology control system, which targets the maximum saving of resource consumption of the cluster head. The simulated outcome of the study shows that the proposed topology control system offers significant energy conservation performance in comparison to the existing hierarchical clustering scheme in WSN.  相似文献   

12.
Since unmanned aerial vehicles (UAVs) have been introduced as mobile nodes for data gathering, wireless sensor networks (WSNs) have progressed considerably. The resulting WSN‐UAV systems are employed for emergency applications and also for remote monitoring purposes. WSN‐UAV systems yield an optimum data gathering method using the WSN. In the proposed method, the nodes' data are transferred using a remotely operated vehicle (drone) rather than the conventional data transferring methods like the direct and hop‐to‐hop data transmission approaches. Then, the gathered data are delivered in the pre‐determined destination point. WSN‐UAV systems, in fact, are a special case of the systems with the mobile sink in which the sink path is previously specified and controlled. In this paper, the effects of clustering parameters on the WSNs are studied; then, the network's lifetime is prolonged by applying some parameters. In addition, the network's performance is enhanced to some extent by assigning some changes in the media access control (MAC) layer. Also, the effect of drone's path pattern on the lifetime of the network is studied.  相似文献   

13.
Wireless sensor networks (WSNs) are constrained by limited node (device) energy, low network bandwidth, high communication overhead and latency. Data aggregation alleviates the constraints of WSN. In this paper, we propose a multi-agent based homogeneous temporal data aggregation and routing scheme based on fish bone structure of WSN nodes by employing a set of static and mobile agents. The primary components of fishbone structure are backbone and ribs connected to both sides of a backbone. A backbone connects a sink node and one of the sensor nodes on the boundary of WSN through intermediate sensor nodes. Our aggregation scheme operates in the following steps. (1) Backbone creation and identifying master centers (or nodes) on it by using a mobile agent based on parameters such as Euclidean distance, residual energy, backbone angle and connectivity. (2) Selection of local centers (or nodes) along the rib of a backbone connecting a master center by using a mobile agent. (3) Local aggregation process at local centers by considering nodes along and besides the rib, and delivering to a connected master center. (4) Master aggregation process along the backbone from boundary sensor node to the sink node by using a mobile agent generated by a boundary sensor node. The mobile agent aggregates data at visited master centers and delivers to the sink node. (5) Maintenance of fish bone structure of WSN nodes. The performance of the scheme is simulated in various WSN scenarios to evaluate the effectiveness of the approach by analyzing the performance parameters such as master center selection time, local center selection time, aggregation time, aggregation ratio, number of local and master centers involved in the aggregation process, number of isolated nodes, network lifetime and aggregation energy. We observed that our scheme outperforms zonal based aggregation scheme.  相似文献   

14.
An efficient data process technology is needed for wireless sensor networks composed of many sensors with constrained communication, computational, and memory resources. Data aggregation is presented as an efficient and significant method to reduce transmitted data and prolong lifetime for wireless sensor networks. Meanwhile, many applications require preserving privacy for secure data aggregation. In this paper, we propose a high energy‐efficient and privacy‐preserving scheme for secure data aggregation. Because of the importance of communication overhead and accuracy, our scheme achieves less communication overhead and higher data accuracy besides providing for privacy preservation. For extensive simulations, we evaluate and conclude the performance of our high energy‐efficient and privacy‐preserving scheme. The conclusion shows that the high energy‐efficient and privacy‐preserving scheme provides better privacy preservation and is more efficient than existing schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.

Query processing can be briefly defined as a database that comprises of an organized collection of data for one or more users either in digital form or in analog form such that it can portray exactly. A Wireless Sensor Network (WSN) is a specialized network of minimum cost, and power sensor nodes that can be described as the ability of performing some processing, gathering sensory information and communicating with each other. Query ordering with data aggregation is the process of scheduling of the nodes to receive the useful data from sensors. Data aggregation is considered as one of the fundamental processing procedures for saving the energy. In WSN data aggregation is an effective way to save the limited resources. This paper proposes a novel query-based data aggregation model with the aid of intelligent techniques. The framing of the query order takes place and the frames are ranked on the basis of a multi-objective function. The newly developed multi-objective function includes Latency, Throughput, and Data freshness. Initially, the solution corresponding to query order is trained in NN using the proposed Fitness-Mated Lion Algorithm (FM-LA). The optimally generated query order from NN is further given for second-level solution generation, which is again applied to FM-LA for subsequent query order optimization. Hence the two-stage optimization process with NN for query ordering is compared over the conventional methods in terms of performance measures like Latency, throughput, and data freshness. Hence, substantiated performance and comparative analysis validate the improved performance of the proposed model.

  相似文献   

16.
A wireless sensor network (WSN) is a network of autonomous, small sensors that can detect, collect, and send data about their surrounding environment. In the Internet of Things (IoT) infrastructure, WSNs are the smart devices that provide the platform with resource input. Security breaches and insider attacks are possible due to the WSN's resource-constrained design. However, the IoT platform's intelligence may be extended to WSN nodes for managing device and data-level security. This paper proposes Monitored Access Constraint Security (MACS) to ensure the privacy of data collected via the ubiquitous processing enabled by the Internet of Things. The IoT platform performs frequent checks on the quality of the interactions between the various nodes to ensure that they are functioning properly and that the sensor aggregation instances are accountable. Node liability is considered while adjusting the aggregate level and the continuity. The method guarantees secure information from the environment and the data sources. The quality of the data gathered in the suggested technique is evaluated based on node liability and information extraction feature. Accordingly, security measures are implemented at data gathering and filtering levels and then assessed using a recurrent learning process. Since there are fewer security breaches overall, the rate of aggregation increases. Aggregation loss, delay time, false rate, throughput, and verification time are used to evaluate the performance.  相似文献   

17.
The development of the wireless sensor networks (WSN) being deployed among numerous application for its sensing capabilities is increasing at a very fast tread. Its distributed nature and ability to extend communication even to the inaccessible areas beyond communication range that lacks human intervention has made it even more attractive in a wide space of applications. Confined with numerous sensing nodes distributed over a wide area, the WSN incurs certain limitations as it is battery powered. Many developed routing enhancements with power and energy efficiency lacked in achieving the significant improvement in the performance. So, the paper proposes a machine learning system (capsule network) and technique (data pruning) for WSN involved in the real world observations to have knowledge‐based learning from the experience for an intelligent way of handling the dynamic and real environment without the intervention of the humans. The WSN cluster‐based routing aided with capsule network and data pruning proffered in paper enables the WSN to have a prolonged network lifetime, energy efficiency, minimized delay, and enhanced throughput by reducing the energy usage and extending communication within the limited battery availability. The proposed system is validated in the network simulator and compared with the WSN without ML to check for the performance enhancements of the WSN with ML inclusions in terms of quality of service enhancements, network lifetime, packet delivery ratio, and energy to evince the efficacy of the WSN with capsule network‐based data pruning.  相似文献   

18.
19.
Data aggregation is an efficient method to reduce the energy consumption in wireless sensor networks (WSNs). However, data aggregation schemes pose challenges in ensuring data privacy in WSN because traditional encryption schemes cannot support data aggregation. Homomorphic encryption schemes are promising techniques to provide end to end data privacy in WSN. Data reliability is another main issue in WSN due to the errors introduced by communication channels. In this paper, a symmetric additive homomorphic encryption scheme based on Rao‐Nam scheme is proposed to provide data confidentiality during aggregation in WSN. This scheme also possess the capability to correct errors present in the aggregated data. The required security levels can be achieved in the proposed scheme through channel decoding problem by embedding security in encoding matrix and error vector. The error vectors are carefully designed so that the randomness properties are preserved while homomorphically combining the data from different sensor nodes. Extensive cryptanalysis shows that the proposed scheme is secure against all attacks reported against private‐key encryption schemes based on error correcting codes. The performance of the encryption scheme is compared with the related schemes, and the results show that the proposed encryption scheme outperforms the existing schemes.  相似文献   

20.
In the wireless sensors network (WSN) field, a wide variety of sensors produce a heterogeneous traffic mix, targeting diverse applications with different reliability requirements. We focus on emergency response scenarios, where a mobile rescuer moves through a, possibly disconnected, network, trying to talk to diverse sensors. We assume two types of sensors, event sensors triggered by an event and periodic sensors activated at predefined time intervals, as well as two types of transmission, either using the highest bit rate available or using predefined bit rates. Our reliable transport protocol for sensor networks with mobile sinks (RT‐SENMOS) takes into account all these parameters and tries to provide the best possible user experience under the current circumstances of the network, using a sink‐driven approach where an application‐specific sink is combined with generic sensors. RT‐SENMOS was implemented and tested over a real network with emulated losses and compared against rate‐controlled reliable transport (RCRT), a well‐known sink‐driven protocol. The results show that RT‐SENMOS fully exploits the available bandwidth in all cases, while RCRT only manages to exploit 60% to 90% of it. Furthermore, RT‐SENMOS adapts much faster to prevailing network conditions, while its protocol overhead, in terms of control messages exchanged, is much lower than that of RCRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号