首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internet Connectivity for Ad Hoc Mobile Networks   总被引:7,自引:0,他引:7  
The growing deployment rate of wireless LANs indicates that wireless networking is rapidly becoming a prevalent form of communication. As users become more accustomed to the use of mobile devices, they increasingly want the additional benefit of roaming. The Mobile IP protocol has been developed as a solution for allowing users to roam outside of their home networks while still retaining network connectivity. The problem with this solution, however, is that the deployment of foreign agents is expensive because their coverage areas are limited due to fading and interference. To reduce the number of foreign agents needed while still maintaining the same coverage, ad hoc network functionality can cooperate with Mobile IP such that multihop routes between mobile nodes and foreign agents can be utilized. In this work, we present a method for enabling the cooperation of Mobile IP and the Ad hoc On-Demand Distance Vector (AODV) routing protocol, such that mobile nodes that are not within direct transmission range of a foreign agent can still obtain Internet connectivity. In addition, we describe how duplicate address detection can be used in these networks to obtain a unique co-located care-of address when a foreign agent is not available.  相似文献   

2.
自组网路由协议综述   总被引:63,自引:0,他引:63  
史美林  英春 《通信学报》2001,22(11):93-103
自组网路由协议用于监控网络拓扑结构变化,交换路由信息,定位目的节点位置,产生、维护和选择路由,并根据选择的路由转发数据。本文综述了自组网路由协议研究方面的一些最新工作,描述了设计自组网路由协议所面临的问题,并着重对该研究开展以来所提出的各种主要协议进行了对比、分析和分类阐述,为进一步的研究提出了新的课题。  相似文献   

3.
    
Following recent advances in the performance of ad hoc networks, the limited life of batteries in mobile devices poses a bottleneck in their development. Consequently, how to minimize power consumption in the Medium Access Control (MAC) layer of ad hoc networks is an essential issue. The power‐saving mode (PSM) of IEEE 802.11 involves the Timing Synchronization Function to reduce power consumption for single‐hop mobile ad hoc networks (MANETs). However, the IEEE 802.11 PSM is known to result in unnecessary energy consumption as well as the problems of overheating and back‐off time delay. Hence, this study presents an efficient power‐saving MAC protocol, called p‐MANET, based on a Multi‐hop Time Synchronization Protocol, which involves a hibernation mechanism, a beacon inhibition mechanism, and a low‐latency next‐hop selection mechanism for general‐purpose multi‐hop MANETs. The main purposes of the p‐MANET protocol are to reduce significantly the power consumption and the transmission latency. In the hibernation mechanism, each p‐MANET node needs only to wake up during one out of every N beacon interval, where N is the number of beacon intervals in a cycle. Thus, efficient power consumption is achieved. Furthermore, a beacon inhibition mechanism is proposed to prevent the beacon storm problem that is caused by synchronization and neighbor discovery messages. Finally, the low‐latency next‐hop selection mechanism is designed to yield low transmission latency. Each p‐MANET node is aware of the active beacon intervals of its neighbors by using a hash function, such that it can easily forward packets to a neighbor in active mode or with the least remaining time to wake up. As a consequence, upper‐layer routing protocols can cooperate with p‐MANET to select the next‐hop neighbor with the best forwarding delay. To verify the proposed design and demonstrate the favorable performance of the proposed p‐MANET, we present the theoretical analysis related to p‐MANET and also perform experimental simulations. The numerical results show that p‐MANET reduces power consumption and routing latency and performs well in extending lifetime with a small neighbor discovery time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Ad hoc网络是由一些移动节点组成的一个多跳的临莳性无线自治系统,具有动态变化的拓扑结构和分布控制的网络机制。由于其无固定基础设施、自我组织、分布管理、动态拓扑、多跳通信等特点成为近年研究的热点,也给现有无线传输路由协议带来了新的挑战。  相似文献   

5.
Transmission Range Effects on AODV Multicast Communication   总被引:3,自引:0,他引:3  
As laptop computers begin to dominate the marketplace, wireless adapters with varying bandwidth and range capabilities are being developed by hardware vendors. To provide multihop communication between these computers, ad hoc mobile networking is receiving increasing research interest. While increasing a node's transmission range allows fewer hops between a source and destination and enhances overall network connectivity, it also increases the probability of collisions and reduces the effective bandwidth seen at individual nodes. To enable formation of multihop ad hoc networks, a routing protocol is needed to provide the communication and route finding capability in these networks. The Ad hoc On-Demand Distance Vector Routing protocol (AODV) has been designed to provide both unicast and multicast communication in ad hoc mobile networks. Because AODV uses broadcast to transmit multicast data packets between nodes, the transmission range plays a key role in determining the performance of AODV. This paper studies the effects of transmission range on AODV's multicast performance by examining the results achieved at varying transmission ranges and network configurations.  相似文献   

6.
Using directional antennas in wireless mobile ad hoc networks can greatly improve the transmission range as well as the spatial reuse. However, it will also cause some problems such as deafness problem and hidden terminal problem, which greatly impair the network performance. This paper first proposes a MAC protocol called Selectively Directional MAC (SDMAC) that can effectively address these problems and significantly improve the network throughput. Then two improvements on SDMAC are proposed. The first one is to improve the network throughput by scheduling the packets in the queue (a scheme called Q-SDMAC), thus the head-of-line (HOL) blocking problem can be addressed. The second one is to relax the assumption that each node knows the relative directions of its neighboring nodes and use caches to buffer those relative directions (a scheme named Q-SDMAC using cache). Extensive simulations show that: (1) SDMAC can achieve much better performance than the existing MAC protocols using directional antennas; (2) The network throughput can be significantly improved by scheduling the packets in the queue; (3) Using caches can still achieve high network throughput when nodes are moving; and (4) Network throughput decreases when directional antennas have side lobe gain.
Yuguang Fang (Corresponding author)Email:
  相似文献   

7.
Ad hoc networks have the notable capability of enabling spontaneous networks. These networks are self-initializing, self-configuring, and self-maintaining, even though the underlying topology is often continually changing. Because research has only begun to scratch the surface of the potential applications of this technology, it is important to prepare for the widespread use of these networks. In anticipation of their ubiquity, the protocols designed for these networks must be scalable. This includes scaling to both networks with many nodes, and networks with rapidly changing topologies. This paper presents two hierarchical clustering protocols that improve the scalability of ad hoc routing protocols. The Adaptive Routing using Clusters (ARC) protocol creates a one-level clustered hierarchy across an ad hoc network, while the Adaptive Routing using Clustered Hierarchies (ARCH) protocol creates a multi-level hierarchy which is able to dynamically adjust the depth of the hierarchy in response to the changing network topology. It is experimentally shown that these protocols, when coupled with an ad hoc routing protocol, produce throughput improvements of up to 80% over the ad hoc routing protocol alone.  相似文献   

8.
    
The basic philosophy of personal communication services is to provide user‐to‐user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad‐hoc networking environments a necessity and not just a desire. Multicast protocols in mobile ad‐hoc networks have been an area of active research for the past couple of years. This paper summarizes the activities and recent advances in this work‐in‐progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad‐hoc networking environments, and by surveying several existing multicasting protocols. This article presents a classification of the current multicast protocols, discusses the functionality of the individual existing protocols, and provides a qualitative comparison of their characteristics according to several distinct features and performance parameters. Furthermore, since many of the additional issues and constraints associated with the mobile ad‐hoc networks are due, to a large extent, to the attribute of user mobility, we also present an overview of research and development efforts in the area of group mobility modeling in mobile ad‐hoc networks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
陈前斌  刘剑  酆勇  唐伦 《通信学报》2013,34(9):53-60
针对无线ad hoc网络中协作造成的中继效率低以及不同QoS需求难以满足等问题,提出了一种联合网络编码和空时编码的协作MAC协议(NSTCMAC)。NSTCMAC将网络编码与空时编码技术相结合,设计出区分业务类型的协作MAC协议传输机制,以满足不同业务类型的QoS需求;进一步通过马尔科夫链模型分析了区分业务类型的协作机制及性能。仿真结果表明,相比传统的DCF、COOPMAC以及CD-MAC协议,NSTCMAC协议能更好地保证不同的QoS需求,并能有效地解决协作造成的中继效率低的问题。  相似文献   

10.
AMRoute: Ad Hoc Multicast Routing Protocol   总被引:13,自引:0,他引:13  
The Ad hoc Multicast Routing protocol (AMRoute) presents a novel approach for robust IP Multicast in mobile ad hoc networks by exploiting user-multicast trees and dynamic logical cores. It creates a bidirectional, shared tree for data distribution using only group senders and receivers as tree nodes. Unicast tunnels are used as tree links to connect neighbors on the user-multicast tree. Thus, AMRoute does not need to be supported by network nodes that are not interested/capable of multicast, and group state cost is incurred only by group senders and receivers. Also, the use of tunnels as tree links implies that tree structure does not need to change even in case of a dynamic network topology, which reduces the signaling traffic and packet loss. Thus AMRoute does not need to track network dynamics; the underlying unicast protocol is solely responsible for this function. AMRoute does not require a specific unicast routing protocol; therefore, it can operate seamlessly over separate domains with different unicast protocols. Certain tree nodes are designated by AMRoute as logical cores, and are responsible for initiating and managing the signaling component of AMRoute, such as detection of group members and tree setup. Logical cores differ significantly from those in CBT and PIM-SM, since they are not a central point for data distribution and can migrate dynamically among member nodes. Simulation results (using ns-2) demonstrate that AMRoute signaling traffic remains at relatively low level for typical group sizes. The results also indicate that group members receive a high proportion of data multicast by senders, even in the case of a highly dynamic network.  相似文献   

11.
Borgonovo  F.  Capone  A.  Cesana  M.  Fratta  L. 《Wireless Networks》2004,10(4):359-366
Ad-hoc networking, though an attractive solution for many applications, still has many unsolved issues, such as the hidden-terminal problem, flexible and prompt access, QoS provisioning, and efficient broadcast service. In this paper we present a MAC architecture able to solve the above issues in environments with no power consumption limitations, such as networks for inter-vehicle communications. This new architecture is based on a completely distributed access technique, RR-ALOHA, capable of dynamically establishing, for each active terminal in the network, a reliable single-hop broadcast channel on a slotted/framed structure. Though the proposed architecture uses a slotted channel it can be adapted to operate on the physical layer of different standards, including the UMTS Terrestrial Radio Access TDD, and IEEE 802.11. The paper presents the mechanisms that compose the new MAC: the basic RR-ALOHA protocol, an efficient broadcast service and the reservation of point-to-point channels that exploit parallel transmissions. Some basic performance figures are discussed to prove the effectiveness of the protocol.  相似文献   

12.
    
A predictive model‐based mobility tracking method, called dead reckoning, is developed for mobile ad hoc networks. It disseminates both location and movement models of mobile nodes in the network so that every node is able to predict or track the movement of every other node with a very low overhead. The basic technique is optimized to use ‘distance effect’, where distant nodes maintain less accurate tracking information to save overheads. The dead reckoning‐based location service mechanism is evaluated against three known location dissemination service protocols: simple, distance routing effect algorithm for mobility (DREAM) and geographic region summary service (GRSS). The evaluation is done with geographic routing as an application. It is observed that dead reckoning significantly outperforms the other protocols in terms of packet delivery fraction. It also maintains low‐control overhead. Its packet delivery performance is only marginally impacted by increasing speed or noise in the mobility model, that affects its predictive ability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
MERIT is a framework that can be used to assess routing protocols in mobile ad hoc networks (manets). It uses the novel concept of a shortest mobile path (SMP) in a mobile graph, a generalization of the shortest path problem for mobile environments. As a measure for routing protocol assessment, we propose the mean ratio of the cost of the route used by a protocol to the cost of the optimal mobile path for the same network history. The cost reflects that the route used in a session can change over time because of network dynamics such as topology changes. The aim is for the ratio to be an abstract, inherent measure of the protocol that is as implementation-independent as possible. The MERIT spectrum, which is the ratio expressed as the function of some parameters of interest, is a characterization of protocol effectiveness. MERIT, for MEan Real vs. Ideal cosT, provides a scalable assessment framework: rather than comparing performance measures of different protocols directly, we compare a protocol to the optimal solution. That is, rather than forcing the comparison to be in the same system, it is done once for each protocol in its own environment. Furthermore, we show that there is an efficient algorithm to solve the underlying SMP problem for important cases, making the approach practically feasible. We also investigate generalizations of and extensions within the MERIT framework. We show that the MERIT framework is rich, with much wider generality and potential applicability than assessing routing protocols.  相似文献   

14.
Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks   总被引:24,自引:0,他引:24  
In military and rescue applications of mobile ad hoc networks, all the nodes belong to the same authority; therefore, they are motivated to cooperate in order to support the basic functions of the network. In this paper, we consider the case when each node is its own authority and tries to maximize the benefits it gets from the network. More precisely, we assume that the nodes are not willing to forward packets for the benefit of other nodes. This problem may arise in civilian applications of mobile ad hoc networks. In order to stimulate the nodes for packet forwarding, we propose a simple mechanism based on a counter in each node. We study the behavior of the proposed mechanism analytically and by means of simulations, and detail the way in which it could be protected against misuse.  相似文献   

15.
Scalable Multicasting: The Core-Assisted Mesh Protocol   总被引:2,自引:0,他引:2  
Most of the multicast routing protocols for ad hoc networks today are based on shared or source-based trees; however, keeping a routing tree connected for the purpose of data forwarding may lead to a substantial network overhead. A different approach to multicast routing consists of building a shared mesh for each multicast group. In multicast meshes, data packets can be accepted from any router, as opposed to trees where data packets are only accepted from routers with whom a tree branch has been established. The difference among multicast routing protocols based on meshes is in the method used to build these structures. Some mesh-based protocols require the flooding of sender or receiver announcements over the whole network. This paper presents the Core-Assisted Mesh Protocol, which uses meshes for data forwarding, and avoids flooding by generalizing the notion of core-based trees introduced for internet multicasting. Group members form the mesh of a group by sending join requests to a set of cores. Simulation experiments show that meshes can be used effectively as multicast routing structures without the need for flooding control packets.  相似文献   

16.
An ad hoc wireless network is an infrastructureless network composed of mobile hosts. The primary concerns in ad hoc networks are bandwidth limitations and unpredictable topology changes. Thus, efficient utilization of routing packets and immediate recovery of route breaks are critical in routing and multicasting protocols. A multicast scheme, On-Demand Multicast Routing Protocol (ODMRP), has been recently proposed for mobile ad hoc networks. ODMRP is a reactive (on-demand) protocol that delivers packets to destination(s) on a mesh topology using scoped flooding of data. We can apply a number of enhancements to improve the performance of ODMRP. In this paper, we propose a mobility prediction scheme to help select stable routes and to perform rerouting in anticipation of topology changes. We also introduce techniques to improve transmission reliability and eliminate route acquisition latency. The impact of our improvements is evaluated via simulation.  相似文献   

17.
    
Wireless mobile ad hoc networks consist of mobile nodes interconnected by wireless multi‐hop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. The topology of such networks changes dynamically as mobile nodes join or depart the network or radio links between nodes become unusable. Supporting appropriate quality of service for mobile ad hoc networks is a complex and difficult issue because of the dynamic nature of the network topology and generally imprecise network state information, and has become an intensely active area of research in the last few years. This paper
  • 1 This article, except for some minor changes, is essentially the same as one that appears in 103 . The latter is a revised and updated version of 51
  • presents the basic concepts of quality of service support in ad hoc networks for unicast communication, reviews the major areas of current research and results, and addresses some new issues. The principal focus is on routing and security issues associated with quality of service support. The paper concludes with some observations on the open areas for further investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

    18.
        
    A mobile ad hoc network (MANET) is characterized by multi-hop wireless links and frequent node mobility. Communication between non-neighboring nodes requires a multi-hop routing protocol to establish a route. But, the route often breaks due to mobility. The source must rediscover a new route for delivering the data packets. This wastes the resources that are limited in MANET. In this paper, a new on-demand routing protocol is proposed, named on-demand routing protocol with backtracking (ORB), for multi-hop mobile ad hoc networks. We use the multiple routes and cache data technique to reduce the rediscovery times and overhead. After executing the route discovery phase, we find out a set of nodes, named checkpoint, which has the multiple routes to the destination. When a checkpoint node receives a data packet, it caches this data packet in its buffer within a specific time period. When a node detects a broken route during the data packets delivery or receives an error packet, it will either recover the broken route or reply the error packet to the source. If a node can not forward the data packet to the next node, it replies an error packet to the source. This packet is backtracking to search a checkpoint to redeliver the data packet to the destination along other alternate routes. The main advantage of ORB is to reduce the flooding search times, maybe just delay and cost while a route has broken. The experimental results show that the proposed scheme can increase the performance of delivery but reduce the overhead efficiently comparing with that of AODV based routing protocols. Hua-Wen Tsai received the B.S. degree in Information Management from Chang Jung Christian University, Taiwan, in June 1998 and the M.B.A. degree in Business and Operations Management from Chang Jung Christian University, Taiwan, in June 2001. Since September 2001, he has been working towards the Ph.D. degree and currently is a doctoral candidate in the Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan. His research interests include wireless communication, ad hoc networks, and sensor networks. Tzung-Shi Chen received the B.S. degree in Computer Science and Information Engineering from Tamkang University, Taiwan, in June 1989 and the Ph.D. degree in Computer Science and Information Engineering from National Central University, Taiwan, in June 1994. He joined the faculty of the Department of Information Management, Chung Jung University, Tainan, Taiwan, as an Associate Professor in June 1996. Since November 2002, he has become a Full Professor at the Department of Information Management, Chung Jung University, Tainan, Taiwan. He was a visiting scholar at the Department of Computer Science, University of Illinois at Urbana-Champaign, USA, from June to September 2001. He was the chairman of the Department of Information Management at Chung Jung University from August 2000 to July 2003. Since August 2004, he has become a Full Professor at the Department of Information and Learning Technology, National University of Tainan, Tainan, Taiwan. Currently, he is the chairman of the Department of Information and Learning Technology, National University of Tainan. He co-received the best paper award of 2001 IEEE ICOIN-15. His current research interests include mobile computing and wireless networks, mobile learning, data mining, and pervasive computing. Dr. Chen is a member of the IEEE Computer Society. Chih-Ping Chu received the B.S. degree in agricultural chemistry from National Chung Hsing University, Taiwan, the M.S. degree in computer science from the University of California, Riverside, and the Ph.D. degree in computer science from Louisiana State University. He is currently a Professor in the Department of Computer Science and Information Engineering of National Cheng Kung University, Taiwan. His current research interests include parallel computing, parallel processing, component-based software development, and internet computing.  相似文献   

    19.
    结合具体的无线Ad hoc网络,提出了机会性的根据网络实时状况选择最佳中继的协作MAC协议,并在NS-2仿真平台上实现,仿真结果表明,较常规的802.11 DCF协议,协作MAC方案有效地提高了网络的递交率。此外对采用RCPC编码协作的MAC协议进行了数值仿真。这些协议和方案可以直接或修改后应用于现有的Ad hoc等无线网络,在一定程度上可以实现跨层的机会协作通信和组网方案。  相似文献   

    20.
    Analysis of TCP Performance over Mobile Ad Hoc Networks   总被引:27,自引:0,他引:27  
    Holland  Gavin  Vaidya  Nitin 《Wireless Networks》2002,8(2-3):275-288
    Mobile ad hoc networks have attracted attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recent research has focused primarily on the routing protocols needed in such an environment. In this paper, we investigate the effects that link breakage due to mobility has on TCP performance. Through simulation, we show that TCP throughput drops significantly when nodes move, due to TCP's inability to recognize the difference between link failure and congestion. We also analyze specific examples, such as a situation where throughput is zero for a particular connection. We introduce a new metric, expected throughput, for the comparison of throughput in multi-hop networks, and then use this metric to show how the use of explicit link failure notification (ELFN) techniques can significantly improve TCP performance.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号