首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explicit Multicasting for Mobile Ad Hoc Networks   总被引:1,自引:0,他引:1  
In this paper we propose an explicit multicast routing protocol for mobile ad hoc networks (MANETs). Explicit multicasting differs from common approaches by listing destination addresses in data packet headers. Using the explicit destination information, the multicast routing protocol can avoid the overhead of employing its own route construction and maintenance mechanisms by taking advantage of unicast routing table. Our protocol – termed Differential Destination Multicast (DDM) – is an explicit multicast routing protocol specifically designed for MANET environment. Unlike other MANET multicasting protocols, instead of distributing membership control throughout the network, DDM concentrates this authority at the data sources (i.e. senders) thereby giving sources knowledge of group membership. In addition, differentially-encoded, variable-length destination headers are inserted in data packets which are used in combination with unicast routing tables to forward multicast packets towards multicast receivers. Instead of requiring that multicast forwarding state to be stored in all participating nodes, this approach also provides the option of stateless multicasting. Each node independently has the choice of caching forwarding state or having its upstream neighbor to insert this state into self-routed data packets, or some combination thereof. The protocol is best suited for use with small multicast groups operating in dynamic MANET environment.  相似文献   

2.
Multicasting is an effective way to provide group communication. In mobile ad hoc networks (MANETs), multicasting can support a wide variety of applications that are characterized by a close degree of collaboration. Since MANETs exhibit severe resource constraints such as battery power, limited bandwidth, dynamic network topology and lack of centralized administration, multicasting in MANETs become complex. The existing multicast routing protocols concentrate more on quality of service parameters like end‐to‐end delay, jitter, bandwidth and power. They do not stress on the scalability factor of the multicast. In this paper, we address the problem of multicast scalability and propose an efficient scalable multicast routing protocol called ‘Power Aware Scalable Multicast Routing Protocol (PASMRP)’ for MANETs. PASMRP uses the concept of class of service with three priority levels and local re‐routing to provide scalability. The protocol also ensures fair utilization of the resources among the nodes through re‐routing and hence the lifetime of the network is increased. The protocol has been simulated and the results show that PASMRP has better scalability and enhanced lifetime than the existing multicast routing protocols. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Mesh‐based multicast routing protocols for mobile ad hoc networks (MANETs) build multiple paths from senders to receivers to deliver packets even in the presence of links breaking. This redundancy results in high reliability/robustness but may significantly increase packet overhead. This paper proposes a mesh‐based multicast protocol, called centered protocol for unified multicasting through announcements (CPUMA), that achieves comparable reliability as existing mesh‐based multicast protocols, however, with significantly much less data overhead. In CPUMA, a distributed core‐selection and maintenance algorithm is used to find the source‐centric center of a shared mesh. We leverage data packets to center the core of each multicast group shared mesh instead of using GPS or any pre‐assignment of cores to groups (the case of existing protocols). The proposed centering scheme allows reducing data packet overhead and creating forwarding paths toward the nearest mesh member instead of the core to reduce latency. We show, via simulations, that CPUMA outperforms existing multicast protocols in terms of data packet overhead, and latency while maintaining a constant or better packet delivery ratio, at the cost of a small increase in control overhead in a few scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Chao  Prasant   《Ad hoc Networks》2006,4(5):586-606
Many potential applications of Mobile Ad Hoc Networks (MANETs) involve group communications among the nodes. Multicasting is an useful operation that facilitates group communications. Efficient and scalable multicast routing in MANETs is a difficult issue. In addition to the conventional multicast routing algorithms, recent protocols have adopted the following new approaches: overlays, backbone-based, and stateless. In this paper, we study these approaches from the protocol state management point of view, and compare their scalability behaviors.To enhance performance and enable scalability, we have proposed a framework for hierarchical multicasting in MANET environments. Two classes of hierarchical multicasting approaches, termed as domain-based and overlay-driven, are proposed. We have considered a variety of approaches that are suitable for different scenarios such as multicast group sizes and number of groups. Results obtained through simulations demonstrate enhanced performance and scalability of the proposed techniques.  相似文献   

5.
This paper discusses a new location prediction based routing (LPBR) protocol for mobile ad hoc networks (MANETs) and its extensions for multicast and multi-path routing. The objective of the LPBR protocol is to simultaneously minimize the number of flooding-based route discoveries as well as the hop count of the paths for a source–destination (sd) session. During a regular flooding-based route discovery, LPBR collects the location and mobility information of nodes in the network and stores the collected information at the destination node of the route search process. When the minimum-hop route discovered through flooding fails, the destination node locally predicts a global topology based on the location and mobility information collected during the latest flooding-based route discovery and runs a minimum-hop path algorithm. If the predicted minimum-hop route exists in reality, no expensive flooding-based route discovery is needed and the source continues to send data packets on the discovered route. Similarly, we propose multicast extensions of LPBR (referred to as NR-MLPBR and R-MLPBR) to simultaneously reduce the number of tree discoveries and the hop count per path from the source to each multicast group receiver. Nodes running NR-MLPBR are not aware of the receivers of the multicast group. R-MLPBR assumes that each receiver node also knows the identity of the other receiver nodes of the multicast group. Finally, we also propose a node-disjoint multi-path extension of LPBR (referred to as LPBR-M) to simultaneously minimize the number of multi-path route discoveries as well as the hop count of the paths.  相似文献   

6.
In recent research, link stability is getting tremendous attention in mobile adhoc networks (MANETs), because of several impediments that occur in a reliable and robust network. Link stability metric is used to improve network performance in terms of end-to-end delay, data success delivery ratio (DSDR) and available route time (ART). Energy consumption, bandwidth and communication delay of major concern in ad hoc networks. A high mobility of MANET nodes reduces the reliability of network communication. In a dynamic networks, high mobility of the nodes makes it very difficult to predict the dynamic routing topology and hence cause route/link failures. Multicast in MANETs is an emerging trend that effectively improves the performance while lowering the energy consumption and bandwidth usage. Multicast routing protocol transmits a packet to multicast a group at a given time instant to achieve a better utilization of resources. In this paper, node mobility is considered to map better their movement in the network. So, the links with long active duration time can be identified as a stable link for route construction. Variation in signal strength is used to identify whether the direction of the node is towards or away from estimating node. We consider signal strength as QoS metric to calculate link stability for route construction. Efforts are made to identify the link with highly probable longer lifetime as the best suitable link between two consecutive nodes. We predict the movement time of nodes that define the route path to the node destination. Exata/cyber simulator is used for network simulation. The simulation results of the proposed routing protocol are compared with on-demand multicast routing protocol and E-ODMRP, which works on minimum hop count path. Analysis of our simulation results has shown improvement of various routing performance metrics such as DSDR, ART, routing overhead and packet drop ratio.  相似文献   

7.
Recently, Mobile Ad Hoc networks (MANETs) are growing in popularity and importance. They present a possible communication among a set of mobile nodes with no need for either a pre-established infrastructure or a central administration. However, in order to guarantee an efficient communication among network nodes, efficient routing algorithms should be established. Routing plays the central role in providing ubiquitous network communications services in such dynamic networks. The problem is further aggravated through the node mobility as any node may move at any time without notice. Several routing protocols had been proposed; however, most of them suffer from control packet flooding, which results in a scalability problem. In this paper, a new routing strategy for MANETs is proposed which is called Snack Routing Strategy (SRS). The basic idea of SRS is to continuously inform the network mobile nodes with any changes in the network topology without overloading the network by a huge amount of control messages. SRS is a hybrid routing strategy that relies on Learning by accumulation, hence, new routes can be discovered by learning the accumulative data stored in the nodes routing tables by several foraging artificial snacks. SRS uses no periodic routing advertisement messages but uses artificial snacks instead, thereby reducing the network bandwidth overhead and minimizing end-to-end transmission delay. SRS has been compared against two well known protocols AODV and DSR. Experimental results have shown that SRS outperforms both AODV and DSR as it introduces the minimal routing overheads.  相似文献   

8.
A mobile ad hoc network (MANET) is a dynamically reconfigurable wireless network that does not have a fixed infrastructure. Due to the high mobility of nodes, the network topology of MANETs changes very fast, making it more difficult to find the routes that message packets use. Because mobile nodes have limited battery power, it is therefore very important to use energy in a MANET efficiently. In this paper, we propose a power-aware multicast routing protocol (PMRP) with mobility prediction for MANETs. In order to select a subset of paths that provide increased stability and reliability of routes, in routing discovery, each node receives the RREQ packet and uses the power-aware metric to get in advance the power consumption of transmitted data packets. If the node has enough remaining power to transmit data packets, it uses the global positioning system (GPS) to get the location information (i.e., position, velocity and direction) of the mobile nodes and utilizes this information to calculate the link expiration time (LET) between two connected mobile nodes. During route discovery, each destination node selects the routing path with the smallest LET and uses this smallest link expiration time as the route expiration time (RET). Each destination node collects several feasible routes and then selects the path with the longest RET value as the primary routing path. Then the source node uses these routes between the source node and each destination node to create a multicast tree. In the multicast tree, the source node will be the root node and the destination nodes will be the leaf nodes. Simulation results show that the proposed PMRP outperforms MAODV (Royer, E. M. & Perkins, C. E. (1999). In Proceedings of the ACM MOBICOM, pp. 207–218, August 1999.) and RMAODV (Baolin, S. & Layuan, L. (2005). In Proceeding of the 2005 IEEE International symposium on microwave antenna, propagation and EMC technologies for wireless communications, Vol. 2, pp. 1514–1517, August 2005.).  相似文献   

9.
Exploring mesh and tree-based multicast. Routing protocols for MANETs   总被引:2,自引:0,他引:2  
Recently, it became apparent that group-oriented services are one of the primary application classes targeted by MANETs. As a result, several MANET-specific multicast routing protocols have been proposed. Although these protocols perform well under specific mobility scenarios, traffic loads, and network conditions, no single protocol has been shown to be optimal in all scenarios. The goal of this paper is to characterize the performance of multicast protocols over a wide range of MANET scenarios. To this end, we evaluate the performance of mesh and tree-based multicast routing schemes relative to flooding and recommend protocols most suitable for specific MANET scenarios. Based on the analysis and simulation results, we also propose two variations of flooding, scoped flooding and hyper flooding, as a means to reduce overhead and increase reliability, respectively. Another contribution of the paper is a simulation-based comparative study of the proposed flooding variations against plain flooding, mesh, and tree-based MANET routing. In our simulations, in addition to "synthetic" scenarios, we also used more realistic MANET settings, such as conferencing and emergency response.  相似文献   

10.
The purpose of this paper is to construct bandwidth-satisfied multicast trees for QoS applications in large-scale ad-hoc networks (MANETs). Recent routing protocols and multicast protocols in large-scale MANETs adopt two-tier infrastructures to avoid the inefficiency of the flooding. Hosts with a maximal number of neighbors are often chosen as backbone hosts (BHs) to forward packets. Most likely, these BHs will be traffic concentrations/bottlenecks of the network. In addition, since host mobility is not taken into consideration in BH selection, these two-tier schemes will suffer from more lost packets if highly mobile hosts are selected as BHs. In this paper, a new multicast protocol is proposed for partitioning large-scale MANET into two-tier infrastructures. In the proposed two-tier multicast protocol, hosts with fewer hops and longer remaining connection time to the other hosts will be selected as BHs. The objective is not only to obtain short and stable multicast routes, but also to construct a stable two-tier infrastructure with fewer lost packets. Further, previous MANET quality-of-service (QoS) routing/multicasting protocols determined bandwidth-satisfied routes for QoS applications. Some are implemented as a probing scheme, but the scheme is inefficient due to high overhead and slow response. On the contrary, the others are implemented by taking advantage of routing and link information to reduce the inefficiency. However, the latter scheme suffers from two bandwidth-violation problems. In this paper, a novel algorithm is proposed to avoid the two problems, and it is integrated with the proposed two-tier multicast protocol to construct bandwidth-satisfied multicast trees for QoS applications in large-scale MANETs. The proposed algorithm aims to achieve better network performance by minimizing the number of forwarders in a tree.  相似文献   

11.
高效率的小规模Ad Hoc组播路由协议   总被引:1,自引:1,他引:0  
Ad Hoc网络中,组播路由协议具有广泛的应用前景。但由于网络拓扑的变化和节点能量的限制,设计具有高效传输能力的组播路由协议比较困难。通过综合比较表驱动路由协议与按需路由协议的优缺点,并且考虑Ad Hoc网络中节点的移动性以及路由发现与路由维护的方法对传输效率的影响,在无状态组播路由的基础上,使用表驱动与按需路由驱动相结合的路由方法,提出一种新的组播路由协议,使传输效率有较高的提升。  相似文献   

12.
Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective and reliable to guarantee successful packet delivery.Based on the data delivery structure,most of the existing multicast routing protocols can be classified into two folders:tree-based and mesh-based.We observe that tree-based ones have high forwarding efficiency and low consumptions of bandwidth,and they may have poor robustness because only one link exists between two nodes.As a treebased multicast routing protocol,MAODV(Multicast Ad hoc On-demand Vector) shows an excellent performance in lightweight ad hoc networks.As the load of network increases,QoS(Quality of Service) is degraded obviously.In this paper,we analyze the impact of network load on MAODV protocol,and propose an optimized protocol MAODV-BB(Multicast Ad hoc On-demand Vector with Backup Branches),which improves robustness of the MAODV protocol by combining advantages of the tree structure and the mesh structure.It not only can update shorter tree branches but also construct a multicast tree with backup branches.Mathematical analysis and simulation results both demonstrate that the MAODV-BB protocol improves the network performance over conventional MAODV in heavy load ad hoc networks.  相似文献   

13.
Wireless sensor networks comprise typically dense deployments of large networks of small wireless capable sensor devices. In such networks, multicast is a fundamental routing service for efficient data dissemination required for activities such as code updates, task assignment and targeted queries. In particular, efficient multicast for sensor networks is critical due to the limited energy availability in such networks. Multicast protocols that exploit location information available from GPS or localization algorithms are more efficient and robust than other stateful protocols as they avoid the difficulty of maintaining distributed state (multicast tree). Since localization is typically already required for sensing applications, this location information can simply be reused for optimizing multicast performance at no extra cost. Recently, two protocols were proposed to optimize two orthogonal aspects of location-based multicast protocols: GMR (Sanchez et al. GMR: Geographic multicast routing for wireless sensor networks. In Proceedings of the IEEE SECON, 2006) improves the forwarding efficiency by exploiting the wireless multicast advantage but it suffers from scalability issues when dealing with large sensor networks. On the other hand, HRPM (Das et al. Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE TPDS 47(4):445–487, 2007) reduces the encoding overhead by constructing a hierarchy at virtually no maintenance cost via the use of geographic hashing but it is energy-inefficient due to inefficacies in forwarding data packets. In this paper, we present HGMR (hierarchical geographic multicast routing), a new location-based multicast protocol that seamlessly incorporates the key design concepts of GMR and HRPM and optimizes them for wireless sensor networks by providing both forwarding efficiency (energy efficiency) as well as scalability to large networks. Our simulation studies show that: (i) In an ideal environment, HGMR incurs a number of transmissions either very close to or lower than GMR, and, at the same time, an encoding overhead very close to HRPM, as the group size or the network size increases. (ii) In a realistic environment, HGMR, like HRPM, achieves a Packet Delivery Ratio (PDR) that is close to perfect and much higher than GMR. Further, HGMR has the lowest packet delivery latency among the three protocols, while incurring much fewer packet transmissions than HRPM. (iii) HGMR is equally efficient with both uniform and non-uniform group member distributions.  相似文献   

14.
Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively.  相似文献   

15.
This paper compares ad hoc on‐demand distance vector (AODV), dynamic source routing (DSR) and wireless routing protocol (WRP) for MANETs to distance vector protocol to better understand the major characteristics of the three routing protocols, using a parallel discrete event‐driven simulator, GloMoSim. MANET (mobile ad hoc network) is a multi‐hop wireless network without a fixed infrastructure. Following are some of our key findings: (1) AODV is most sensitive to changes in traffic load in the messaging overhead for routing. The number of control packets generated by AODV became 36 times larger when the traffic load was increased. For distance vector, WRP and DSR, their increase was approximately 1.3 times, 1.1 times and 7.6 times, respectively. (2) Two advantages common in the three MANET routing protocols compared to classical distance vector protocol were identified to be scalability for node mobility in end‐to‐end delay and scalability for node density in messaging overhead. (3) WRP resulted in the shortest delay and highest packet delivery rate, implying that WRP will be the best for real‐time applications in the four protocols compared. WRP demonstrated the best traffic scalability; control overhead will not increase much when traffic load increases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
One of the infrastructure-free networks is mobile ad hoc networks (MANETs) that are built with limited battery life using wireless mobile devices. This restricted battery capability in MANETs creates the necessity of considering the energy-awareness constraint in designing them. As routing protocols, the major aim of MANETs is to create the energy awareness in the network; it improves the network's lifetime through effectively utilizing the available restricted energy. Moreover, it creates some limitations like the mobility constraint, wireless link's sensitivity to environmental impacts, and restricted transmission range and residual energy of nodes that causes rapid modifications in the network topology and frequent link failure. By taking those problems, this paper plans to develop a new multipath routing protocol, where the hybrid optimization algorithm with the integration of cuckoo search optimization (CSO) and butterfly optimization algorithm (BOA) is proposed and named sensory modality-based cuckoo search butterfly optimization (SM-CSBO) for determining the optimal path between the source and destination. The main goal is to select the path with better link quality and more stable links to guarantee reliable data transmission. The multi-objective function is considered with the factors regarding distance, normalized energy, packet delivery ratio, and control overhead to develop an effective routing protocol in MANET. The proposed model of SM-CSBO algorithm has superior than 5.8%, 30.4%, 36.7%, and 39.3%, correspondingly maximized than PSO, SFO, CSO, and SFO algorithms while considering the number of nodes as 150. The simulation outcomes proved that it enhances network performance when compared with the other traditional protocols.  相似文献   

17.
Chu-Fu Wang 《Ad hoc Networks》2012,10(7):1399-1418
A MANET (Mobile Ad-Hoc Network) consists of relocating wireless communication devices without infrastructure installed in its network environment. Due to the mobility of the devices, the network topology changes frequently and consequently results in poor network performance. When the density of nodes in a MANET is sparse, the performance becomes even worse due to the intermittent connected routing problem arising. To cope with this problem, this paper integrates mechanisms of Virtual Multiple Message Ferry Routing (VMMFR) and Virtual Multiple Message Ferry Dispatch Scheduling (VMMFDS) into the routing protocol design of MANETs and proposes a Virtual Multiple Message Ferry Backbone Routing (VMMFBR) scheme for MANETs. Several simulations have been conducted using the network simulator NS-2 to evaluate the performance of the proposed VMMFR mechanism. Due to the VMMFR mechanism providing a reliable and predictable backbone routing for MANETs communications. The results show that the proposed method has a higher packet delivery ratio, low bandwidth consumed, and that there is greater precision of packet delivery time, compared to the traditional MANETs routing protocols (AOMDV and DSR). In addition, some theoretical results for the proposed VMMFDS mechanism to minimize the transfer waiting time are also given in this paper.  相似文献   

18.
A mobile ad‐hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi‐hop radio network. Routing protocols in MANETs define how routes between source and destination nodes are established and maintained. Multicast routing provides a bandwidth‐efficient means for supporting group‐oriented applications. The increasing demand for such applications coupled with the inherent characteristics of MANETs (e.g., lack of infrastructure and node mobility) have made secure multicast routing a crucial yet challenging issue. Recently, several multicast routing protocols (MRP) have been proposed in MANETs. Depending on whether security is built‐in or added, MRP can be classified into two types: secure and security‐enhanced routing protocols, respectively. This paper presents a survey on secure and security‐enhanced MRP along with their security techniques and the types of attacks they can confront. A detailed comparison for the capability of the various routing protocols against some known attacks is also presented and analyzed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The Multicast Ad hoc On-Demand Distance Vector (MAODV) protocol achieves multicast routing in self-organizing wireless mobile on-demand networks, e.g., Mobile Ad-hoc Networks (MANETs). However, unreliable wireless links degrade network reliability and network goodput, and the unreliable link problem becomes worse in multicasting because a multicast tree consists of more number of wireless links. MAODV adopts a broadcast-type local repair, and thus yields a large number of broadcast-type repair messages, increases extensive control overhead, and involves largely power consumption. Thus, a cross-layer unicast-type multihop local repair approach is proposed to recover broken links in multicasting MANETs. Additionally, the cross-layer mechanism provides mobile nodes to send a cross-layer message to the TCP sender to keep current congestion window (cwnd) and slow start threshold (ssthresh) when downstream links are temporarily broken, and then increases network goodput. Finally, the optimal number of neighbor-tiers is analyzed and the optimal substitute node is identified. Numerical results demonstrate that the proposed approach outperforms other approaches in successful repair rate, control message overhead, packet delivery ratio, and network goodput.  相似文献   

20.
An Efficient Multicast Routing Protocol in Wireless Mobile Networks   总被引:11,自引:0,他引:11  
Suh  Young-Joo  Shin  Hee-Sook  Kwon  Dong-Hee 《Wireless Networks》2001,7(5):443-453
Providing multicast service to mobile hosts in wireless mobile networking environments is difficult due to frequent changes of mobile host location and group membership. If a conventional multicast routing protocol is used in wireless mobile networks, several problems may be experienced since existing multicast routing protocols assume static hosts when they construct the multicast delivery tree. To overcome the problems, several multicast routing protocols for mobile hosts have been proposed. Although the protocols solve several problems inherent in multicast routing proposals for static hosts, they still have problems such as non-optimal delivery path, datagram duplication, overheads resulting from frequent reconstruction of a multicast tree, etc. In this paper, we summarize these problems of multicast routing protocols and propose an efficient multicast routing protocol based on IEFT mobile IP in wireless mobile networks. The proposed protocol introduces a multicast agent, where a mobile host receives a tunneled multicast datagram from a multicast agent located in a network close to it or directly from the multicast router in the current network. While receiving a tunneled multicast datagram from a remote multicast agent, the local multicast agent may start multicast join process, which makes the multicast delivery route optimal. The proposed protocol reduces data delivery path length and decreases the amount of duplicate copies of multicast datagrams. We examined and compared the performance of the proposed protocol and existing protocols by simulation under various environments and we got an improved performance over the existing proposals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号