共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现阶段人脸素描-照片合成方法合成的图像存在清晰度较低、面部细节模糊等问题,提出基于多残差动态融合生成对抗网络的人脸素描-照片合成方法.首先设计多残差动态融合网络,从不同的密集残差模块分别提取特征并进行残差学习.然后根据不同层次的多样化残差特征生成对应的偏移量,不同位置的卷积核依据偏移量改变采样坐标,使网络自适应地关... 相似文献
2.
人脸素描照片合成是异质图像变换重要分支,近年来受到广泛关注,在数字娱乐和执法领域都得到了广泛应用。近几年基于生成对抗网络的方法在图像跨域转换方面取得了较大的进步,但合成图像会产生噪声、伪影等问题。以U-Net网络为基础,提出了一种融合多尺度梯度特征的人脸素描照片合成方法,该方法结合了MSG-GAN的思想:允许判别器不仅使用生成器最终输出的梯度,而且还使用从上采样中间层输出的不同分辨率的梯度。同时在U-Net网络中加入了残差学习单元,来缓解深度神经网络训练过程中产生的梯度消失和梯度爆炸的问题。此外还加入了基于MRF-CNN的伪人脸特征生成器,采用块匹配的方法来生成伪人脸图像用于监督生成器的人脸生成。最后在CUFS和CUFSF数据集上的实验结果表明所提出方法的有效性。 相似文献
3.
针对破损区域较大的人脸图像,修复后图像存在局部色差、边界伪影和细节缺陷等问题,提出基于部分卷积和多尺度特征融合的人脸图像修复模型。该模型主要分为多尺度修复网络和判别器网络。修复网络通过多级特征提取模块和主分支模块,有效融合深层和浅层的图像特征,实现了人脸图像的特征提取和融合。此外,构建由内容损失、感知损失、风格损失、总变分损失和对抗损失组成的联合损失函数,用于训练多尺度修复网络,并通过与判别器网络的相互对抗,提高修复图像与真实图像的视觉一致性。实验结果表明,对于不同的掩膜率,采用该模型修复的图像具有合理的纹理结构和上下文语义信息,并在定性和定量比较上表现更好。 相似文献
4.
人脸素描具有丰富的阴影、纹理和鲜明的脸部特征,广泛应用于人脸识别和生活娱乐等领域.鉴于艺术家对人脸素描的绘制步骤具有一定次序的特点,提出一种模拟艺术家绘制人脸素描步骤的算法.将素描生成过程分为2个阶段:第1阶段利用重建的图像辅助生成素描信息;第2阶段利用第1阶段得到的素描信息辅助合成目标素描图像,达到具有脸部轮廓、头发纹理与五官特征、脸部阴影特征的目的.采用CUHK和CUFS数据集进行大量实验,通过PSNR, SSIM和FIR这3个客观评价指标进行对比,结果表明,所提算法的PSNR比典型算法平均提高了4.7 dB, SSIM平均提升0.08, FID分数平均降低8.3;该算法能够生成效果更好的人脸素描图像. 相似文献
5.
为解决传统素描人脸合成方法中素描人脸图像细节模糊和清晰度低的问题,提出一种基于双层生成对抗网络的素描人脸合成方法。该方法学习面部照片与素描人脸图像之间的映射关系,并通过双层网络将映射关系限制为一对一映射;利用重建损失函数约束生成网络,提高合成能力;通过生成网络与判别网络的对抗训练,优化网络参数,合成最终素描人脸图像。通过在CUHK素描人脸库上的对比实验,证明该方法合成的素描人脸图像质量明显优于其他传统素描人脸合成方法,其合成的素描人脸图像面部细节更完整,清晰度更高。 相似文献
6.
7.
为解决现有素描人脸合成方法中素描人脸图像细节缺失、清晰度低及可适用性差的问题,提出一种三网络对抗学习的模型.由面部特征提取网络、生成网络及判别网络组成,引入面部细节损失与对抗损失相结合的复合损失函数,提高合成素描人脸图像的质量.在公共素描人脸数据集中与现有方法的定量与定性对比实验验证了该方法能够生成更加逼真、清晰的素描... 相似文献
8.
针对多尺度生成式对抗网络图像修复算法(MGANII)在修复图像过程中训练不稳定、修复图像的结构一致性差以及细节和纹理不足等问题,提出了一种基于多特征融合的多尺度生成对抗网络的图像修复算法。首先,针对结构一致性差以及细节和纹理不足的问题,在传统的生成器中引入多特征融合模块(MFFM),并且引入了一个基于感知的特征重构损失函数来提高扩张卷积网络的特征提取能力,从而改善修复图像的细节性和纹理特征;然后,在局部判别器中引入了一个基于感知的特征匹配损失函数来提升判别器的鉴别能力,从而增强了修复图像的结构一致性;最后,在对抗损失函数中引入风险惩罚项来满足利普希茨连续条件,使得网络在训练过程中能快速稳定地收敛。在CelebA数据集上,所提的多特征融合的图像修复算法与MANGII相比能快速收敛,同时所提算法所修复图像的峰值信噪比(PSNR)、结构相似性(SSIM)比基线算法所修复图像分别提高了0.45%~8.67%和0.88%~8.06%,而Frechet Inception距离得分(FID)比基线算法所修复图像降低了36.01%~46.97%。实验结果表明,所提算法的修复性能优于基线算法。 相似文献
9.
素描人脸合成在娱乐和刑侦领域具有重要应用价值.为了解决传统素描人脸合成方法生成图像面部细节模糊,缺失真实感等问题,改进了CycleGAN网络结构,提出一种基于多判别器循环生成对抗网络的素描人脸合成方法.该方法选取残差网络作为生成网络模型,在生成器隐藏层中增加多个判别器,提高网络对生成图像细节特征的提取能力;并建立了重构... 相似文献
10.
目的 人脸年龄合成旨在合成指定年龄人脸图像的同时保持高可信度的人脸,是计算机视觉领域的热门研究方向之一。然而目前主流人脸年龄合成模型过于关注纹理信息,忽视了与人脸相关的多尺度特征,此外网络存在对身份信息筛选不佳的问题。针对以上问题,提出一种融合通道位置注意力机制和并行空洞卷积的人脸年龄合成网络(generative adversarial network(GAN)composed of the parallel dilated convolution and channel-coordinate attention mechanism,PDA-GAN)。方法 PDA-GAN基于生成对抗网络提出了并行三通道空洞卷积残差块和通道—位置注意力机制。并行三通道空洞卷积残差块将3种膨胀系数空洞卷积提取的不同尺度人脸特征融合,提升了特征尺度上的多样性和总量上的丰富度;通道—位置注意力机制通过对人脸特征的长度、宽度和深度显著性计算,定位图像中与年龄高度相关的通道和空间位置区域,增强了网络对通道和空间位置上敏感特征的表达能力,解决了特征冗余问题。结果 实验在Flickr高清人脸数据集(Flickr-faces-high-quality,FFHQ)上训练,在名人人脸属性高清数据集(large-scale celebfaces attributes dataset-high quality,Celeba-HQ)上测试,将本文提出的PDA-GAN与最新的3种人脸年龄图像合成网络进行定性和定量比较,以验证本文方法的有效性。实验结果表明,PDA-GAN显著提升了人脸年龄合成的身份置信度和年龄估计准确度,具有良好的身份信息保留和年龄操控能力。结论 本文方法能够合成具有较高真实度和准确性的目标年龄人脸图像。 相似文献
11.
针对水下退化图像细节模糊、对比度低和蓝绿色偏问题,提出了一种基于多尺度特征融合生成对抗网络的水下图像增强算法。算法以生成对抗网络为基本框架,结合传统白平衡算法和多尺度增强网络实现对水下退化图像的增强。通过改进的通道补偿白平衡算法矫正蓝绿色偏,并以卷积神经网络提取偏色校正后图像的特征;提取图像多尺度特征,结合提出的残差密集块将每一层的局部特征增强为捕获语义信息的全局特征,并与偏色校正图像的特征相融合;通过重建模块将融合特征重建为清晰图像,恢复图像的细节信息。实验结果表明,该算法增强的水下图像去雾效果较好且颜色更真实,有效改善了水下图像色偏和模糊的问题,在主观指标和客观指标上的实验结果均优于对比算法。 相似文献
12.
目的 跨年龄素描-照片转换旨在根据面部素描图像合成同一人物不同年龄阶段的面部照片图像。该任务在公共安全和数字娱乐等领域具有广泛的应用价值,然而由于配对样本难以收集和人脸老化机制复杂等原因,目前研究较少。针对此情况,提出一种基于双重对偶生成对抗网络(double dual generative adversarial networks,D-DualGANs)的跨年龄素描-照片转换方法。方法 该网络通过设置4个生成器和4个判别器,以对抗训练的方式,分别学习素描到照片、源年龄组到目标年龄组的正向及反向映射。使素描图像与照片图像的生成过程相结合,老化图像与退龄图像的生成过程相结合,分别实现图像风格属性和年龄属性上的对偶。并增加重构身份损失和完全重构损失以约束图像生成。最终使输入的来自不同年龄组的素描图像和照片图像,分别转换成对方年龄组下的照片和素描。结果 为香港中文大学面部素描数据集(Chinese University of Hong Kong(CUHK)face sketch database,CUFS)和香港中文大学面部素描人脸识别技术数据集(CUHK face sketch face recognition technology database,CUFSF)的图像制作对应的年龄标签,并依据标签将图像分成3个年龄组,共训练6个D-DualGANs模型以实现3个年龄组图像之间的两两转换。同非端到端的方法相比,本文方法生成图像的变形和噪声更小,且年龄平均绝对误差(mean absolute error,MAE)更低,与原图像相似度的投票对比表明1130素描与3150照片的转换效果最好。结论 双重对偶生成对抗网络可以同时转换输入图像的年龄和风格属性,且生成的图像有效保留了原图像的身份特征,有效解决了图像跨风格且跨年龄的转换问题。 相似文献
13.
14.
针对人脸校正中单幅图像难以解决大姿态侧脸的问题,提出一种基于多姿态特征融合生成对抗网络(MFFGAN)的人脸校正方法,利用多幅不同姿态侧脸之间的相关信息来进行人脸校正,并采用对抗机制对网络参数进行调整。该方法设计了一种新的网络,包括由多姿态特征提取、多姿态特征融合、正脸合成三个模块组成的生成器,以及用于对抗训练的判别器。多姿态特征提取模块利用多个卷积层提取侧脸图像的多姿态特征;多姿态特征融合模块将多姿态特征融合成包含多姿态侧脸信息的融合特征;而正脸合成模块在进行姿态校正的过程中加入融合特征,通过探索多姿态侧脸图像之间的特征依赖关系来获取相关信息与全局结构,可以有效提高校正结果。实验结果表明,与现有基于深度学习的人脸校正方法相比,所提方法恢复出的正脸图像不仅轮廓清晰,而且从两幅侧脸中恢复出的正脸图像的识别率平均提高了1.9个百分点,并且输入侧脸图像越多,恢复出的正脸图像的识别率越高,表明所提方法可以有效融合多姿态特征来恢复出轮廓清晰的正脸图像。 相似文献
15.
针对人脸校正中单幅图像难以解决大姿态侧脸的问题,提出一种基于多姿态特征融合生成对抗网络(MFFGAN)的人脸校正方法,利用多幅不同姿态侧脸之间的相关信息来进行人脸校正,并采用对抗机制对网络参数进行调整。该方法设计了一种新的网络,包括由多姿态特征提取、多姿态特征融合、正脸合成三个模块组成的生成器,以及用于对抗训练的判别器。多姿态特征提取模块利用多个卷积层提取侧脸图像的多姿态特征;多姿态特征融合模块将多姿态特征融合成包含多姿态侧脸信息的融合特征;而正脸合成模块在进行姿态校正的过程中加入融合特征,通过探索多姿态侧脸图像之间的特征依赖关系来获取相关信息与全局结构,可以有效提高校正结果。实验结果表明,与现有基于深度学习的人脸校正方法相比,所提方法恢复出的正脸图像不仅轮廓清晰,而且从两幅侧脸中恢复出的正脸图像的识别率平均提高了1.9个百分点,并且输入侧脸图像越多,恢复出的正脸图像的识别率越高,表明所提方法可以有效融合多姿态特征来恢复出轮廓清晰的正脸图像。 相似文献
16.
在现实生活中,人脸图像受隐私或安全因素的限制难以直接采集,因此可以考虑采用图像生成方法。当使用生成对抗网络进行图像生成时,容易出现分辨率低、边缘模糊、身份信息特征丢失等问题。针对上述问题,提出了一种新的人脸特征生成模型:通过将关键信息作为独立编码嵌入隐式空间,再与全局特征进行融合插值实现对人脸关键特征的可控生成;引入改进的注意力模块,在生成过程中关注局部特征和全局特征的相关性;将色差损失和人脸分量损失联合引入整体损失函数中,负责约束像素颜色和人脸纹理特征。该算法可以在人脸局部区域生成自然真实的外观特征,保留原始身份信息,并生成平滑的面部轮廓。使用预处理后的CelebA数据集的实验表明,该算法在主观视觉效果上有显著提升,同时与现有方法相比在PSNR和SSIM上有稳定的提升。 相似文献
17.
针对人脸表情呈现方式多样化以及人脸表情识别易受光照、姿势、遮挡等非线性因素影响的问题,提出了一种深度多尺度融合注意力残差网络(deep multi-scale fusion attention residual network, DMFA-ResNet)。该模型基于ResNet-50残差网络,设计了新的注意力残差模块,由7个具有三条支路的注意残差学习单元构成,能够对输入图像进行并行多卷积操作,以获得多尺度特征,同时引入注意力机制,突出重点局部区域,有利于遮挡图像的特征学习。通过在注意力残差模块之间增加过渡层以去除冗余信息,简化网络复杂度,在保证感受野的情况下减少计算量,实现网络抗过拟合效果。在3组数据集上的实验结果表明,本文提出的算法均优于对比的其他先进方法。 相似文献
18.
针对行人重识别任务在特征提取时缺乏对行人特征尺度变化的考虑,导致其易受环境影响而具有低行人重识别准确率的问题,提出了一种基于多尺度特征融合的行人重识别方法。首先,在网络浅层通过混合池化操作来提取多尺度的行人特征,从而帮助网络提升特征提取能力;然后,在残差块内添加条形池化操作以分别提取水平和竖直方向的远程上下文信息,从而避免无关区域的干扰;最后,在残差网络之后利用不同尺度的空洞卷积进一步保留多尺度的特征,从而帮助模型灵活有效地解析场景结构。实验结果表明,在Market-1501数据集上,所提方法的Rank1达到95.9%,平均精度均值(mAP)为88.5%;在DukeMTMC-reID数据集上,该方法的Rank1达到90.1%,mAP为80.3%。可见所提方法能够较好地保留行人特征信息,从而提高行人重识别任务准确率。 相似文献
19.
当前,基于Deepfakes等深度伪造技术生成的“换脸”类伪造视频泛滥,给公民个人隐私和国家政治安全带来巨大威胁,为此,研究视频中深度伪造人脸检测技术具有重要意义。针对已有伪造人脸检测方法存在的面部特征提取不充分、泛化能力弱等不足,提出一种基于多尺度Transformer对多域信息进行融合的伪造人脸检测方法。基于多域特征融合的思路,同时从视频帧的频域与RGB域进行特征提取,提高模型的泛化性;联合EfficientNet和多尺度Transformer,设计多层级的特征提取网络以提取更精细的伪造特征。在开源数据集上的测试结果表明,相比已有方法,所提方法具有更好的检测效果;同时在跨数据集上的实验结果证明了所提模型具有较好的泛化性能。 相似文献