首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以环氧丙烷聚醚多元醇、苯酐聚酯多元醇、多苯基甲烷多异氰酸酯PM-200、发泡剂一氟二氯乙烷(HCFC-141b)、泡沫稳定剂硅油AK-8801等为主要原料,采用一步法合成了聚氨酯硬泡,考察了不同种类多元醇及其配比、发泡剂、泡沫稳定剂种类及用量等对聚氨酯硬泡抗压性能的影响。结果表明:高羟值、高官能度的环氧丙烷聚醚多元醇可提高泡沫的压缩强度,且当环氧丙烷聚醚多元醇4110为100份,并加入20份左右苯酐聚酯多元醇580及10份左右聚醚403,泡沫稳定剂用量1~2份,发泡剂水用量0.5~1份,HCFC-141b用量30~35份,催化剂用量0.5~1.5份时,所得聚氨酯硬泡性能较好。  相似文献   

2.
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734.  相似文献   

3.
采用一步法合成聚氨酯硬质泡沫塑料,考察了催化剂DABCO8154对聚氨酯塑料发泡体系的发泡时间、表观密度、热稳定性能、力学性能等的影响。随着DABCO8154用量的增加,发泡时间缩短,表观密度先下降后提高。压缩性能、弯曲性能随着DABCO8154含量增加逐渐降低。随着DABCO8154的加入,制品热稳定性提高。  相似文献   

4.
The present work studied a simple direct foaming method for preparation of porous alumina ceramics by expansion of a ceramic suspension based on polyurethane (PU) foam system. The effects of polyurethane formulas including catalyst composition, blowing agent content, NCO index and solid content on the samples properties were investigated. The results showed that the homogeneity, porosity and mechanical properties are various for different formulas. The dried green bodies showed diametrical compressive strength in the range of 0.39–1.25 MPa and were amenable to machining operations such as milling, drilling and lathing. Meanwhile, PU formulas play an important role in the microstructures and mechanical properties of green bodies and sintered ceramic foams. Pyrolytic removal of polyurethane skeleton followed by sintering at 1550 °C produced alumina bodies with open cell porosity 54–75% and diametrical compressive strength 1.39–28.47 MPa. Microstructure showed both large (200–300 μm) and small (50–100 μm) pores all with various sizes of windows. Based on the optimization of polyurethane formulation, the porous alumina foam with porosity of 64% and compressive strength of 25.26 MPa was prepared. This polyurethane foam system is easily available and low-cost, which could be widely applied in preparation of other porous ceramics, such as ZrO2, SiO2, etc.  相似文献   

5.
吴崇珍  高书亚  张丽 《化工进展》2016,35(4):1144-1148
采用异氰酸酯封端且不含游离异氰酸酯单体的聚氨酯预聚体作为酚醛泡沫的增韧改性剂,并在后期混合发泡工艺中减少酸性固化剂的用量,制备了不粉化、韧性高的改性酚醛泡沫体,并考察了异氰酸酯基含量对酚醛泡沫体的表观密度、压缩强度、吸水率、阻燃性和导热性能等的影响.结果表明:随着聚氨酯预聚体用量以及异氰酸酯基含量的增加,改性酚醛泡沫体的表观密度、压缩强度增大;当异氰酸酯基含量为8.6%时,抗粉化程度最好;随着聚氨酯预聚体用量的增加,吸水率和热导率变化不大,当聚氨酯用量不超过6%时,临界氧指数仍大于40.  相似文献   

6.
A composite foam, polyurethane–melamine formaldehyde (PU/MF) foam, was prepared through foaming PU resins in the three‐dimensional netlike skeleton of MF foam. The chemical structure, morphology, cell size and distribution, flame retardancy, thermal properties and mechanical properties of such composite foam were systematically investigated. It was found that the PU/MF foam possessed better fire retardancy than pristine PU foam and achieved self‐extinguishment. Moreover, no melt dripping occurred due to the contribution of the carbonized MF skeleton network. In order to further improve the flame retardancy of the composite foam, a small amount of a phosphorus flame retardant (ammonium polyphosphate) and a char‐forming agent (pentaerythritol) were incorporated into the foam, together with the nitrogen‐rich MF, thus constituting an intumescent flame‐retardant (IFR) system. Owing to the IFR system, the flame‐retardant PU/MF foam can generate a large bulk of expanded char acting as an efficient shielding layer to hold back the diffusion of heat and oxygen. As a result, the flame‐retardant PU/MF foam achieved a higher limiting oxygen index of 31.2% and exhibited immediate self‐extinguishment. It exhibited significantly reduced peak heat release rate and total heat release, as well as higher char residual ratio compared to PU foam. Furthermore, the composite foam also showed obviously improved mechanical performance in comparison with PU foam. Overall, the present investigation provided a new approach for fabricating a polymer composite foam with satisfactory flame retardancy and good comprehensive properties. © 2018 Society of Chemical Industry  相似文献   

7.
纳米二氧化硅改性硬质聚氨酯泡沫塑料的研究   总被引:2,自引:0,他引:2  
采用浇注成型法合成密度为250 mg/cm3的纳米SiO2改性硬质聚氨酯泡沫塑料(PUR-R),研究了纳米SiO2含量及偶联剂处理对纳米SiO2改性PUR-R的各种力学性能的影响。结果表明:直接使用纳米SiO2,可使PUR-R的某些力学性能得到提高,而偶联剂处理可进一步改善纳米SiO2对PUR-R的增强作用,用偶联剂改性过的纳米SiO2增强PUR-R与纯PUR-R相比,除断裂伸长率降低外,其他力学性能如拉伸强度、压缩强度、弯曲强度、冲击强度及弯曲模量等均有所提高。  相似文献   

8.
Wheat straw was liquefied in the mixture of polyethylene glycol (PEG 400) and glycerin in the presence of acid at the temperature 130–160°C. The final liquefaction products having the hydroxyl number of 250–430 mg KOH/g and the of about 1050 can be used as the polyol component to manufacture polyurethane. A kind of polyurethane foam was prepared from liquefied wheat straw, commercial polyol, and diisocyanates in the presence of organotin catalysts and foaming agents. The polyurethane foam presented better compressive strength and thermal stability than that manufactured from diisocyanate and polyol alone. The thermal stability of PU foam was improved with the increase of [NCO]/[OH] ratio and the addition of liquefied wheat straw. The polyurethane foam presented faster biodegradation at ambient temperature than normal polyurethane foam did. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
高密度聚氨酯硬泡塑料/玻纤粉复合材料的研究   总被引:2,自引:1,他引:1  
以聚醚多元醇、PAPI、催化剂、发泡剂和玻璃纤维等为原料,制备高密度聚氨酯硬泡及它与磨碎玻纤粉的复合材料。研究了不同密度硬泡的强度及磨碎玻纤粉粒径、预处理及其含量对复合材料强度的影响,不同复合材料的热稳定性。结果表明,随着密度的增加,硬泡的各种强度值总体上均呈逐渐增加趋势,其中500kg/m^3的聚氨酯的拉伸强度比200kg/m^3的提高了104.74%,冲击强度提高了194.84%;400目粒径的玻纤粉可使复合材料具有更高的拉伸强度、弯曲强度及压缩强度;玻纤的加入将降低材料的强度值,但偶联剂预处理可使它们有所改善;加入磨碎玻纤粉后,材料的热稳定性增加,且采用偶联剂KH550对玻纤粉进行预处理可进一步改善复合材料的耐热性能。  相似文献   

10.
To explore the potential of isocyanate usage reduction, water‐blown rigid polyurethane foams were made by replacing 0, 20, and 50% of Voranoll® 490 in the B‐side of the foam formulation by epoxidized soybean oil (ESBO) with an isocyanate index ranging from 50 to 110. The compressive strength, density, and thermal conductivity of foams were measured. The foam surface temperature was monitored before and throughout the foaming reaction as an indirect indication of the foaming temperature. Increasing ESBO replacement and/or decreasing isocyanate index decreased the foam's compressive strength. The density of the foam decreased while decreasing the isocyanate index to 60. Further decrease in isocyanate index resulted in foam shrinkage causing a sharp increase in the foam density. The thermal conductivity of foams increased while decreasing the isocyanate index and increasing the ESBO replacement. Mathematical models for predicting rigid polyurethane foam density, compressive strength, and thermal conductivity were established and validated. Similar to compressive strength, the foaming temperature decreased while decreasing the isocyanate index and increasing the ESBO replacement. Because of the lower reactivity of ESBO with isocyanate, the rate of foaming temperature decrease with decreasing isocyanate index was in the order of 0% > 20% > 50% ESBO replacement. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The objective of this study was to investigate the effect of adding flame-retardant melamine and five different dispersants on the precipitation, foaming, mechanical, and thermal properties of flexible polyurethane foam (FPUF). Precipitation experiments were conducted to analyze the effect of dispersant on the separation of flame retardant and polyol, and the foaming characteristics of polyurethane (PU) foam after adding dispersant were analyzed. The effect of adding a dispersant on mechanical strength was characterized by measuring tensile strength, tearing strength, and hardness, and scanning electron microscopy analysis was performed to analyze morphological characteristics. Thermogravimetric analysis (TGA) was performed to analyze the thermal properties of PU foam. A horizontal flame test, limiting oxygen index test, and cone calorimeter tests were conducted to examine the flame retardancy of PU foam with flame retardant melamine and dispersant added. The dispersant ANTI-TERRA-U is a solution of a salt of unsaturated polyamine amides and low-molecular acidic polyesters. And, the dispersant BYK-220S is a solution of a low molecular weight, unsaturated acidic polycarboxylic acid polyester with a polysiloxane copolymer. The dispersants ANTI-TERRA-U and BYK-220S improved the density, tensile strength, tear strength, and hardness of FPUF. TGA of the top and bottom portions of the foam showed less weight difference for samples containing dispersants, indicating better homogeneity due to improved dispersibility. Therefore, we conclude that dispersants are beneficial additives to improve the mechanical properties and dispersibility of PU foam.  相似文献   

12.
Polyurethane foam was fabricated from polymeric diphenylmethane diisocyanate (pMDI) and soy‐based polyol. Nanoclay Cloisite 30B was incorporated into the foam systems to improve their thermal stabilities and mechanical properties. Neat polyurethane was used as a control. Soy‐based polyurethane foams with 0.5–3 parts per hundred of polyols by weight (php) of nanoclay were prepared. The distribution of nanoclay in the composites was analyzed by X‐ray diffraction (XRD), and the morphology of the composites was analyzed through scanning electron microscopy (SEM). The thermal properties were evaluated through dynamic mechanical thermal analysis (DMTA). Compression and three‐point bending tests were conducted on the composites. The densities of nanoclay soy‐based polyurethane foams were higher than that of the neat soy‐based polyurethane foam. At a loading of 0.5 php nanoclay, the compressive, flexural strength, and modulus of the soy‐based polyurethane foam were increased by 98%, 26%, 22%, and 65%, respectively, as compared to those of the neat soy‐based polyurethane foam. The storage modulus of the soy‐based polyurethane foam was improved by the incorporation of nanoclay. The glass transition temperature of the foam was increased as the nanoclay loading was increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Phenolic foam exhibits outstanding flame, smoke and toxicity properties, good insulation properties and low production costs. However, the brittleness and pulverization of phenolic foam have severely limited its application in many fields. In this study, a novel phosphorus‐containing polyurethane prepolymer (DOPU) modifier was firstly synthesized, and then the foaming formula and processing of toughening phenolic foam modified with DOPU and glass fiber were explored. The structure and reactive behavior of prepolymer and phenolic resin were investigated using Fourier transform infrared spectroscopy. The effects of DOPU and glass fiber on the apparent density, compressive strength, bending strength and water absorption were investigated. The results suggested that the apparent density, compressive strength and bending strength of modified phenolic foam tended to increase irregularly with increasing content of DOPU. The addition of DOPU led to lower water absorption of glass fiber‐filled foam. Thermal stability and flame retardancy were examined using thermogravimetric analysis and limiting oxygen index (LOI) tests. It was found that foam with 3% DOPU and 0.5% glass fiber added exhibited good thermal stability and high char yields. The LOI value of modified phenolic foams decreased with increasing DOPU content, but it still remained at 41.0% even if the amount of modifier loaded was 10 wt%. © 2012 Society of Chemical Industry  相似文献   

14.
硬质聚氨酯泡沫塑料研究进展   总被引:5,自引:0,他引:5  
介绍了合成硬质聚氨酯泡沫塑料的主要原料,包括主体成分和发泡剂、泡沫稳定剂等;对硬质聚氨酯泡沫塑料的物理性能,如力学性能、阻燃性能、老化性能等及其在工程上的应用情况进行了综述。  相似文献   

15.
大型模胎用硬质聚氨酯泡沫塑料的制备研究   总被引:1,自引:1,他引:0  
研究了大型模胎用硬质聚氨酯泡沫塑料的制备方法,考察了催化剂用量、匀泡剂用量、物理发泡剂用量、化学发泡剂、模具压力、后处理温度等对硬质聚氨酯泡沫塑料泡体结构和性能的影响。结果表明,可以通过控制催化剂三乙醇胺和有机锡的用量配比来调节发泡和凝胶速率,匀泡剂用量、物理发泡剂用量、化学发泡剂、模具压力、后处理温度等均能对泡体结构和性能产生影响。  相似文献   

16.
Carbon foam derived from various precursors   总被引:3,自引:0,他引:3  
A series of carbon foams was developed by using low-cost precursors, such as coal, coal tar pitch and petroleum pitch. The properties of the resultant carbon foams cover a wide range, e.g., bulk density, 0.32-0.67 g/cm3, compressive strength, 2.5-18.7 MPa, isotropic and anisotropic microstructure, etc. The investigation of foaming mechanism and the relationship between properties and structure indicate that the fluidity and dilatation of the foaming precursors significantly affect the foaming performance and foam structure. Raw coal samples were foamed directly without pretreatment in this work. However, for the pitch based foaming precursor, a thermal pretreatment is necessary to adjust its thermoplastic properties to meet the foaming requirement. The mechanical strength of carbon foam is found to be related to not only the foam cell structure, but also the fluidity and anisotropic domain size of the foaming precursors. In addition, the micro and mesopore structure in carbon foam matrix was investigated by gas adsorption and it was found that it also affects the strength of carbon foam and is related to the fluidity of foaming precursor.  相似文献   

17.
无氯氟化学发泡剂CFA8125可与异氰酸酯反应放出CO2气体,用于硬质聚氨酯发泡,分别使用无氯氟化学发泡剂CFA8125、第三代物理发泡剂HFC-245fa和第四代物理发泡剂LBA制备硬质聚氨酯泡沫,并对其性能进行了研究.结果表明,所得硬质聚氨酯泡沫的密度为43 kg/m3左右时,使用化学发泡剂的硬质聚氨酯泡沫在长、宽...  相似文献   

18.
A study on the apparent thermal conductivity of polyurethane foam was carried out. A HCFC (hydrochlorofluorocarbon) gas and carbon dioxide were used as the physical blowing agent and ultrasonic excitation was applied to increase the rate of bubble nucleation. The thermal conductivity of the binary gas mixture was predicted theoretically to estimate the apparent thermal conductivity of the polymer foam. Effects of conduction and radiation on the apparent thermal conductivity of the cellular polyurethane were considered with respect to the cell size and the effect of convection was neglected because of the small cell size. A laboratory RIM machine was designed and built for foaming experiments. The foaming experiments were performed at various processing conditions, and density, apparent thermal conductivity, number of cells, and cell sizes were measured. Best results such as low thermal conductivity and small bubbles were obtained when the polyol was mixed with the HCFC gas and saturated with carbon dioxide at 0.3 MPa, and foamed with ultrasonic nucleation.  相似文献   

19.
开发环境友好型聚氨酯是目前聚氨酯(polyurethane,PU)泡沫塑料领域的热点课题。在PU中引入大豆分离蛋白质(soy protein isolate,SPI),采用阻燃聚醚制备了环境友好型阻燃高回弹聚氨酯软泡。研究了SPI的不同添加方式及用量对聚氨酯软泡物理、力学、阻燃和生物降解性能的影响。结果表明,SPI以添加的方式而不是替代聚醚的方式加入软泡性能更好;少量添加SPI可以提高PU软泡的开孔率、密度、压陷硬度、舒适因子、回弹率和断裂伸长率,对压缩永久变形率、拉伸强度和极限氧指数影响不大。SPI改变了PU的硬段结构,可以有效促进聚氨酯泡沫的生物降解。  相似文献   

20.
综述了硬泡聚氨酯的燃烧方式和阻燃原理。介绍了阻燃技术的研究现状和最新进展。硬质泡沫塑料是第五大塑料的总称。是氨基甲酸酯段多元醇与多异氰酸酯反应生成的聚合物。聚氨酯泡沫塑料是聚氨酯产品的一大分支,它占聚氨酯材料总量的20%左右。是近十年来发展最快的合成材料。它具有优异的物理机械性能和保温性能。硬质聚氨酯泡沫塑料具有重量轻、强度高、导热系数低、隔音效果好等特点,在建筑工程中得到了广泛的应用,也应用于工业、运输、石油化工管道、航海、军事等领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号