首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase possible data transmission rate and to provide non-primary user’s desired throughput in short-range communications, in this paper we propose new cognitive radio (CR) network architecture with the coexistence with the legacy IEEE 802.11 WLAN. The legacy WLAN ISM band channel is mostly used for common control channel for cognitive operation on the licensed bands to manage CR devices when they join the network and to announce the utilization of the licensed band or primary system appearance on the current used channels. The proposed CR-WLAN MAC protocol is designed to accommodate new CR related features in the proposed network architecture and it has backward compatibility to the legacy WLAN system: (1) Network entry procedure is modified to inform CR users the current licensed band status and to manage CR user group separately by AP; (2) During the operation, two types of CR beacon multicasting mechanisms are proposed, CR beacons help CR users to decide its service change or spectrum handover and to immediately evacuate from the current used channel when primary signal is detected, (3) When the CR user need to change the serving CR AP, not only the beacon frame body of neighbor APs but also the licensed and unlicensed band status is delivered to CR node to search the target CR-WLAN AP fast and (4) A new type of hidden node problem is introduced that focuses on possible signal collisions between incumbent devices and cognitive radio CR-WLAN devices, and a simple and efficient sensing information exchange mechanism between neighbor APs is proposed. The simulation results show that the proposed CR system can provide reliable protection to primary systems, as well as efficient utilization of given licensed spectrum resources, in which the network throughput can be greatly enhanced.  相似文献   

2.
An access control engine with dynamic priority resource allocation (ACE-DPRA) is proposed for unlicensed users to utilize free spectrum of wireless communication systems. A cognitive radio (CR) network with sensing and learning abilities is essential for unlicensed users to achieve ACE-DPRA. Three algorithms are included in ACE-DPRA to improve the spectral efficiency. While requesting to set up connection, unlicensed CR users generate excessive interferences to licensed users. The proposed ACE-DPRA with an admission control scheme allows the connection of unlicensed CR users without degrading the communication quality of licensed users. The priority algorithm for utilizing the unused spectrum is designed according to the location information of unlicensed users. A transmitted power control method is achieved by a fuzzy-learning mechanism. The spectral efficiency of wireless communication systems can be increased after adopting the proposed ACE-DPRA algorithm. Simulation results show that licensed users keep the advantages of high transmission data rate, low interference power, and low average outage probability after the connection of unlicensed CR users.  相似文献   

3.
Signal Processing in Cognitive Radio   总被引:1,自引:0,他引:1  
Cognitive radio allows for usage of licensed frequency bands by unlicensed users. However, these unlicensed (cognitive) users need to monitor the spectrum continuously to avoid possible interference with the licensed (primary) users. Apart from this, cognitive radio is expected to learn from its surroundings and perform functions that best serve its users. Such an adaptive technology naturally presents unique signal-processing challenges. In this paper, we describe the fundamental signal-processing aspects involved in developing a fully functional cognitive radio network, including spectrum sensing and spectrum sculpting.   相似文献   

4.
Cognitive radio (CR) is a novel and promising spectrum management technique, which aims to cope with the spectrum scarcity problem occurring in unlicensed bands and alleviate the inefficient spectrum utilization of licensed bands. To ensure that the operation of licensed users will not be adversely affected and that the licensed bands can be efficiently utilized by unlicensed users, this paper proposes a cognitive radio MAC protocol called SMC-CR-MAC. When any primary user is detected, the proposed SMC-CR-MAC protocol applies Contiguous Channel Switching and Sender-Receiver Channel Swap rules to cope with the rendezvous, packet collision, and channel congestion problems. Simulation results show that the proposed SMC-CR-MAC protocol can significantly improve the network performance in terms of utilization of licensed bands, standard deviation of traffic load on each channel, and probability of successful rendezvous.  相似文献   

5.
To utilize spectrum resources more efficiently, dynamic spectrum access attempts to allocate the spectrum to users in an intelligent manner. Uncoordinated sharing with cognitive radio (CR) users is a promising approach for dynamic spectrum access. In the uncoordinated sharing model, CR is an enabling technology that allows the unlicensed or secondary users to opportunistically access the licensed spectrum bands (belonging to the so‐called primary users), without any modifications or updates for the licensed systems. However, because of the limited resources for making spectrum observations, spectrum sensing for CR is bound to have errors and will degrade the grade‐of‐service performance of both primary and secondary users. In this paper, we first propose a new partial spectrum sharing policy, which achieves efficient spectrum sharing between two licensed networks. Then, a Markov chain model is devised to analyze the proposed policy considering the effects of sensing errors. We also construct a cross‐layer design framework, in which the parameters of spectrum sharing policy at the multiple‐access control layer and the spectrum sensing parameters at the physical layer are simultaneously coordinated to maximize the overall throughput of the networks, while satisfying the grade‐of‐service constraints of the users. Numerical results show that the proposed spectrum sharing policy and the cross‐layer design strategy achieve a much higher overall throughput for the two networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The cognitive radio technology is the new paradigm to fulfill ever increasing need of bandwidth ultimately the radio spectrum by accommodating the radio spectrum dynamically to secondary users/unlicensed users without causing the interference. In cognitive radio, the spectrum opportunities have been checked for Space, Time and frequency dimensions but ‘Angle’ dimension has not been explored till now. In this paper we have investigated accuracy of various ‘Angle-of-Arrival (AoA)’ estimation algorithms: ESPRIT, MUSIC, Bartlett, and Capon for opportunistic secondary users’ network under AWGN and time varying fading channels. The improvement in performance of these algorithms has been observed as array elements, signal-to-noise ratio and samples increases. An ‘adaptive thresholding’ technique has been proposed to improve the performance of AoA algorithms. Thus by estimating an ‘Angle-of- Arrival’ of licensed users, the unlicensed users can be accommodated in the same geographical area into the same channel in the same frequency band at the same time by directing unlicensed users’ beam in different direction than the direction of licensed users. Thereby improving spectrum utilization.  相似文献   

7.
Cognitive radio (CR) is an emerging wireless communications paradigm of sharing spectrum among licensed (or, primary) and unlicensed (or, CR) users. In CR networks, interference mitigation is crucial not only for primary user protection, but also for the quality of service of CR user themselves. In this paper, we consider the problem of interference mitigation via channel assignment and power allocation for CR users. A cross-layer optimization framework for minimizing both co-channel and adjacent channel interference is developed; the latter has been shown to have considerable impact in practical systems. Cooperative spectrum sensing, opportunistic spectrum access, channel assignment, and power allocation are considered in the problem formulation. We propose a reformulation–linearization technique (RLT) based centralized algorithm, as well as a distributed greedy algorithm that uses local information for near-optimal solutions. Both algorithms are evaluated with simulations and are shown quite effective for mitigating both types of interference and achieving high CR network capacity.  相似文献   

8.
As the lack of frequency resources became a critical problem in recent years, solutions had to be found in order to use the available spectrum in a more efficient way. Cognitive radio (CR) technology is a possible answer to this, by proposing a dynamic spectrum access approach, which allows unlicensed users to access unused licensed frequency bands. In order to detect the presence of licensed users, any CR equipment has to perform a spectrum sensing process. This paper presents a practical solution for building this essential part of a frequency agile device. The implementation of the proposed real-time spectrum sensing solution is based on commercial software defined radio platforms. Hardware and software details regarding the described prototype are given, together with aspects related to the optimal configuration of the used platforms for such an application. Moreover, the performance that can be obtained using the proposed solution is evaluated through measurements performed in several different scenarios.  相似文献   

9.
Defense against Primary User Emulation Attacks in Cognitive Radio Networks   总被引:3,自引:0,他引:3  
Cognitive radio (CR) is a promising technology that can alleviate the spectrum shortage problem by enabling unlicensed users equipped with CRs to coexist with incumbent users in licensed spectrum bands while causing no interference to incumbent communications. Spectrum sensing is one of the essential mechanisms of CRs and its operational aspects are being investigated actively. However, the security aspects of spectrum sensing have garnered little attention. In this paper, we identify a threat to spectrum sensing, which we call the primary user emulation (PUE) attack. In this attack, an adversary's CR transmits signals whose characteristics emulate those of incumbent signals. The highly flexible, software-based air interface of CRs makes such an attack possible. Our investigation shows that a PUE attack can severely interfere with the spectrum sensing process and significantly reduce the channel resources available to legitimate unlicensed users. To counter this threat, we propose a transmitter verification scheme, called LocDef (localization-based defense), which verifies whether a given signal is that of an incumbent transmitter by estimating its location and observing its signal characteristics. To estimate the location of the signal transmitter, LocDef employs a non-interactive localization scheme. Our security analysis and simulation results suggest that LocDef is effective in identifying PUE attacks under certain conditions.  相似文献   

10.
Cognitive radio networks use dynamic spectrum access of secondary users (SUs) to deal with the problem of radio spectrum scarcity . In this paper, we investigate the SU performance in cognitive radio networks with reactive-decision spectrum handoff. During transmission, a SU may get interrupted several times due to the arrival of primary (licensed) users. After each interruption in the reactive spectrum handoff, the SU performs spectrum sensing to determine an idle channel for retransmission. We develop two continuous-time Markov chain models with and without an absorbing state to study the impact of system parameters such as sensing time and sensing room size on several SU performance measures. These measures include the mean delay of a SU, the variance of the SU delay, the SU interruption probability, the average number of interruptions that a SU experiences, the probability of a SU getting discarded from the system after an interruption and the SU blocking probability upon arrival.  相似文献   

11.
Cognitive radio (CR) technology enables opportunistic exploration of unused licensed channels. By giving secondary users (SUs) the capability to utilize the licensed channels (LCs) when there are no primary users (PUs) present, the CR increases spectrum utilization and ameliorates the problem of spectrum shortage. However, the absence of a central controller in CR ad hoc network (CRAHN) introduces many challenges in the efficient selection of appropriate data and backup channels. Maintenance of the backup channels as well as managing the sudden appearance of PUs are critical issues for effective operation of CR. In this paper, a prioritized medium access control protocol for CRAHN, PCR-MAC, is developed which opportunistically selects the optimal data and backup channels from a list of available channels. We also design a scheme for reliable switching of a SU from the data channel to the backup channel and vice-versa. Thus, PCR-MAC increases network throughput and decreases SUs’ blocking rate. We also develop a Markov chain-based performance analysis model for the proposed PCR-MAC protocol. Our simulations, carried out in \(NS-3\) , show that the proposed PCR-MAC outperforms other state-of-the-art opportunistic medium access control protocols for CRAHNs.  相似文献   

12.

Cognitive radio (CR) technology is to assure the better utilization of the spectrum, permitting the non-licensed users to utilize the unused bands provided to the Licensed or primary users, which is made effective through the application of the Orthogonal Frequency Division Multiplexing (OFDM). The effective utilization of the OFDM channels through temporarily allocating the bands to the unlicensed users avoids interference. In order to ensure the reliable spectrum sensing in CR with effective spectral efficiency, the channel estimation (CE) is enabled in the OFDM-based multi-input and multi-output systems. The channel estimation is facilitated through the pilot-based sequential approach for the least square CE in OFDM-based CR. The optimal insertion of the pilots in the input data symbols before transmitting the signal through the fading OFDM channels in CR is made through the proposed rider grey wolf optimization, which is the integration of the grey wolf optimization and rider optimization algorithm. The estimation is done through the least square of the original channel state and the estimated symbols. The experimental analysis is progressed both in Rician and Rayleigh environments with minimal mean square error of 1.28E?06 and bit error rate of 0.000626.

  相似文献   

13.
Cognitive radio (CR) is the key enabling technology for an efficient dynamic spectrum access. It aims at exploiting an underutilized licensed spectrum by enabling opportunistic communications for unlicensed users. In this work, we first develop a distributed cognitive radio MAC (COMAC) protocol that enables unlicensed users to dynamically utilize the spectrum while limiting the interference on primary (PR) users. The main novelty in COMAC lies in not assuming a predefined CR-to-PR power mask and not requiring active coordination with PR users. COMAC provides a statistical performance guarantee for PR users by limiting the fraction of the time during which the PR users' reception is negatively affected by CR transmissions. To provide such a guarantee, we develop probabilistic models for the PR-to-PR and the PR-to-CR interference under a Rayleigh fading channel model. From these models, we derive closed-form expressions for the mean and variance of interference. Empirical results show that the distribution of the interference is approximately lognormal. Based on the developed interference models, we derive a closed-form expression for the maximum allowable power for a CR transmission. We extend the min-hop routing to exploit the available channel information for improving the perceived throughput. Our simulation results indicate that COMAC satisfies its target soft guarantees under different traffic loads and arbitrary user deployment scenarios. Results also show that exploiting the available channel information for the routing decisions can improve the end-to-end throughput of the CR network (CRN).  相似文献   

14.
魏东兴  殷福亮 《信号处理》2014,30(3):306-313
在认知无线电系统中,频谱检测是搜索空闲信道,避免对授权用户产生有害干扰的关键环节。本文提出了一种离散小波变换与时域能量检测相结合的频谱检测方法,对SU共享的宽带信道中的窄带PU信号进行预检测。首先对接收信号进行离散小波变换,获得能够反映信道频谱变化的细节小波系数,然后以该系数作为统计量,对其进行时域能量统计计算。该方法计算量较小,容易实现,可进行多分辨率分析,能够提高检测的灵敏度;不需要被检测信号的先验知识,适用于检测各种未知信号。仿真实验对无线麦克信号和地面无线数字电视信号进行了检测,验证了该方法的正确性。   相似文献   

15.
16.
Shaghluf  Nagwa  Gulliver  T. Aaron 《Wireless Networks》2019,25(6):3265-3274

In this paper, the spectrum and energy efficiency of cooperative spectrum prediction (CSP) in cognitive radio networks are investigated. In addition, the performance of cooperative spectrum prediction is evaluated using a hidden Markov model (HMM) and a multilayer perceptron (MLP) neural network. The cooperation between secondary users in predicting the next channel status employs AND, OR and majority rule fusion schemes. These schemes are compared for HMM and MLP predictors as a function of channel occupancy in term of prediction error, spectrum efficiency and energy efficiency. The impact of busy and idle state prediction errors on the spectrum efficiency is also investigated. Simulation results are presented which show a significant improvement in the spectrum efficiency of the secondary users CSP with the majority rule at the cost of a small degradation in energy efficiency compared to single spectrum prediction and traditional spectrum sensing.

  相似文献   

17.
The core of cognitive radio paradigm is to introduce cognitive devices able to opportunistically access the licensed radio bands. The coexistence of licensed and unlicensed users prescribes an effective spectrum hole‐detection and a non‐interfering sharing of those frequencies. Collaborative resource allocation and spectrum information exchange are required but often costly in terms of energy and delay. In this paper, each secondary user (SU) can achieve spectrum sensing and data transmission through a coalitional game‐based mechanism. SUs are called upon to report their sensing results to the elected coalition head, which properly decides on the channel state and the transmitter in each time slot according to a proposed algorithm. The goal of this paper is to provide a more holistic view on the spectrum and enhance the cognitive system performance through SUs behavior analysis. We formulate the problem as a coalitional game in partition form with non‐transferable utility, and we investigate on the impact of both coalition formation and the combining reports costs. We discuss the Nash Equilibrium solution for our coalitional game and propose a distributed strategic learning algorithm to illustrate a concrete case of coalition formation and the SUs competitive and cooperative behaviors inter‐coalitions and intra‐coalitions. We show through simulations that cognitive network performances, the energy consumption and transmission delay, improve evidently with the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In cognitive radio (CR) networks, secondary users should effectively use unused licensed spectrums, unless they cause any harmful interference to the primary users. Therefore, spectrum sensing and channel resource allocation are the 2 main functionalities of CR networks, which play important roles in the performance of a CR system. To maximize the CR system utility, we propose a joint out‐of‐band spectrum sensing and operating channel allocation scheme based on genetic algorithm for frequency hopping–based CR networks. In this paper, to effectively sense the primary signal on hopping channels at each hopping slot time, a set of member nodes sense the next hopping channel, which is called out‐of‐band sensing. To achieve collision‐free cooperative sensing reporting, the next channel detection notification mechanism is presented. Using genetic algorithm, the optimum sensing and data transmission schedules are derived. It selects a sensing node set that participate the spectrum sensing for the next expected hopping channel during the current channel hopping time and another set of nodes that take opportunity for transmitting data on the current hopping channel. The optimum channel allocation is performed in accordance with each node's individual traffic demand. Simulation results show that the proposed scheme can achieve reliable spectrum sensing and efficient channel allocation.  相似文献   

19.
A novel approach, which combines spectrum adaptation and orthogonal frequency division multiplexing (OFDM), is proposed to share the licensed spectrum dynamically for cognitive radio systems. Given spectrum sensing and channel estimation information by the receiver, an improved model due to signal power thresholds is adopted to achieve spectrum adaptation for unlicensed users. In order to efficiently allocate the unlicensed signal power, a dynamic power allocation algorithm is also proposed. Simulation results indicate that the propositional scheme solves the partial interference problem of interference temperature model (ITM) and improves the spectrum utilization.  相似文献   

20.
Radio spectrum is a limited natural resource and with the increasing number of wireless devices, an efficient spectrum management concept to make a better utilization of this resource is essential. Opportunistic spectrum access (OSA) concept is a solution to increase the spectrum capacity and thus reducing the data collision for wireless ad hoc networks. Cognitive radio (CR) technology is developed to realize OSA. Based on CR, the secondary users access opportunistically the spectrum owned by primary users. However, the consequence appearance of primary users affects greatly the performance of secondary users within OSA. Thus, a new spectrum management scheme is a must to reduce such effect. In this paper, a new spectrum management scheme over a heterogeneous spectrum environment is proposed. The proposed scheme is based on using channels from both licensed and unlicensed bands as spectrum environment for ad hoc networks. An analytical model based on Markov chains is developed to evaluate the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号