首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 8 毫秒
1.
Bi-2223 bulks were fabricated by a technique, a combination of cold-isostatic-press (CIP) and sinter-forging. Two batches of samples were prepared as presintering was conducted after (Route 1) and before CIP (Route 2). The effects of the deformation rate during sinter-forging, and presintering to critical current density J c from exterior and interior sections were investigated. The results revealed that the critical current density of bulks fabricated by Route 1 was much higher than for bulks made by Route 2. The interior section of a sample with higher deformation rate has more contribution to J c, whereas that with low and too high deformation rate has more equal contribution from exterior and interior sections. Field dependence of critical current density revealed that optimized sinter-forging could improve the critical current density J c behavior in external fields, particularly in the low field region below 50 mT, for the samples where CIP was conducted before presintering. For the samples initially pressed with CIP, a higher sinter-forging deformation rate can improve the flux pinning force when the external field is parallel to the sample surface, but degrades the pinning force density when the external fields is perpendicular to the sample surface (H//c, 77 K).  相似文献   

2.
A promising method —“powder in tube”technique was used to fabricate Ag-sheathed Bi-2223superconductive tapes with high critical current density.After a combination processing of pressingand subsequent heat treatment,we obtained tapes with high degree of texture,good compactionand uniform properties.At 77 K in zero field,J_C was higher than 1×10~4 A/cm~2 while the highestJ_C was 1.69×10~4 A/cm~2.SEM and XRD was used to detect the tapes texture,and the relationship be-tween J_C and the degree of texture is discussed.In addition,the reason for obstacling the improvementof J_C is also investigated.  相似文献   

3.
The alternating current losses have been investigated at 77 K on the silver-sheathed (Bi, Pb)-2223 multifilamentary tape having 37 filaments using an inductive technique under ac magnetic field with frequencies between 100 and 510 Hz. The measured data on the multifilamentary tape have been discussed vis-à-vis that reported for monofilamentary tapes. The results obtained could be accounted fairly well by considering contributions from the eddy current losses in the silver matrix along with the hysteresis losses in the superconducting filaments.  相似文献   

4.
DC magnetization and AC complex susceptibility measurements on (Bi,Pb) : 2223 high-temperature superconductors impurified with various amounts of BaZrO3 are presented. The results are discussed in the frame of the critical state model, and the values of the inter- and intragranular critical current density as well as of the field for full penetration are estimated. The values of the intergranular critical current density are consistent with those obtained from transport measurements. The intragranular critical current density and the field for full penetration have similar values from both DC magnetization and AC susceptibility measurements. It was shown that, in the (Bi,Pb) : 2223 system, BaZrO3 impurification changes only the properties of the intergrain matrix, while the superconducting properties of the grains are not modified.  相似文献   

5.
The ac susceptibility data was employed to extract the temperature dependence of the critical current density, J c(T), as well as the variation of flux-creep exponent n(T,H ac) with temperature and ac field amplitude in bulk samples of polycrystalline magnetic superconductor RuSr2GdCu2O8 (Ru-1212). The critical state models and the collective flux-creep approximation model were successfully accounted to describe such behavior below the transition temperature. The calculated values of n(T,H) are well fitted to a power law of the following form: n(T,H)=n 0(H)T s(H), where s is field dependent exponent whose values varied from −2.4, −1.01 for field amplitudes ranging from 0.5 G and 3.8 G. The power law describing the frequency dependence of χ′ is found to be consistent with the results of the current-dependent effective activation energy of the form U(J)=U 0ln (J c/J). Additionally, the dependence of the current density is found to scale according as: J c(T)=J c0(1−T/T c) n , where the exponent n values varied from 1.05 to 1.25. Such dependence is an indication of intergrain coupling that could be ascribed in terms of superconductor–insulator–superconductor junctions. The derived temperature dependence of J c(T) is in good agreement with the data obtained from the measurements using the traditional “loss-maximum” approach. Furthermore, the flux-creep effect increased with increasing both ac fields and temperatures except at about 15–25 K below the onset of T c, where a slowing down of the flux creep was observed.  相似文献   

6.
We investigated the superconducting critical temperature, the intra- and intergranular critical current density, and the thermopower properties of Bi1.7Pb0.4Sr1.5Ca2.5Cu3.6O x /(LiCl) y samples. All these properties have been compared with those of Bi1.7Pb0.4Sr1.5Ca2.5Cu3.6O x /(LiF) y specimens. It was found that the critical temperature determined from resistive and AC complex susceptibility measurements show a maximum and the transition width shows a minimum for the intermediate values of y. Powder X-ray diffraction studies and the AC complex susceptibility measurements reveal that in our samples the amount of Bi2Sr2Ca2Cu3O10 + high-temperature superconducting phase is maximum for y 0.02. The amount of LiCl in Bi1.7Pb0.4Sr1.5Ca2.5Cu3.6O x /(LiCl) y changes the superconducting properties of the grains as well as of the intergrain matrix. The splitting of the peak in the temperature dependence of the imaginary part of the complex susceptibility, corresponding to the dissipation inside the grains, was also observed.  相似文献   

7.
In this study, the measured curves of AC susceptibility (ACS) components, (T) and (T), of polycrystalline RuSr2GdCu2O8 (Ru-1212) superconductor were scaled onto a single curve using the peak temperature of its imaginary part (T p) as the scaling parameter for various AC field amplitudes from 0.5 to 24 G. The dependence of the AC magnetic field amplitude on T p is scaled as: H ac (1–T p/T c)2.25. Similarly, the current density J c, extracted from the AC field amplitude is also scaled as: J c (1 – T p/T c)2.25. The dependencies of T p on frequency and AC field amplitude are also investigated and the time parameter t 0 of the order of 10–8 s is estimated from the dependence of T p on frequency. The dependencies of activation energy on temperature, T, and the field amplitude, H ac, are obtained from the Arrhenius-like semilog plot of frequency () and T p. Such dependencies on temperature and field amplitude can be described by a scaling law of the form: U(H ac,T) = U 0[1 – T/T p]H ac –0.17.  相似文献   

8.
The Bi-(Pb)-Ca-Sr-Cu-O ceramics of typical cation composition 2 (0.4) 223, presintered at 800°C, are formed by arc melting and rapidly cooling the 2021 superconducting phase, CaO, and Cu2O. The arc-melted samples sintered in air at 840°C exhibit a solid-state structural transformation of the components and a mixture of 2122 and 2223 superconducting phases, and small amounts of Ca2CuO3, Ca2PbO4, and CuO appear. When the arc melting is used as an intermediate stage in the preparation of the high-T c superconductors in this system, a significant increase in density (from 3.7 to 5.7 g/cm3) and in critical current density (from 28 to 60 A/cm2 in zero field and at liquid-nitrogen temperature) is observed, while the critical temperature remains practically unchanged (–104 K).  相似文献   

9.
An optimal mode of thermomagnetic treatment of the materials and articles being in paramagnetic state is presented. The results given show the efficiency for application of this mode of thermomagnetic treatment and its combination with the technique of growing crystals from the melt to increase the density of the critical transport current in a bulk high-temperature superconducting ceramics.  相似文献   

10.
It has been found that the degree of thermal stability of Bi(Pb)-2223/Ag pancake-shaped coils at 77 K can be determined by controlling the amount of matrix and superconducting materials during processing. The intermediate deformation step between sintering stages has been found to be crucial in optimizing the performance of the processed composite tapes as well as governing the thermal stability of the subsequently made pancake-shaped coils. Results obtained from numerical analysis of the finite element method has shown that monolayer coils produced from Bi(Pb)-2223/Ag composite tapes are thermally very stable with high values of the fill factor. However, increasing the number of co-wound tapes would require either a reduction in the fill factor or an increase in cooling rate for thermal stability to be sustained as would otherwise be achieved with the metallurgically same single tape.  相似文献   

11.
Sinter forging has been employed to improve critical current density of Bi-2223 bulks. After that, optimal post annealing is also very important to get good performance. Different annealing schedules have been used to produce Bi-2223 sinter-forged bulks in different atmospheres. In this paper, Bi-2223 long bulks were prepared by a combination of cold isostatic pressing (CIP) and sinter-forging techniques. The samples were undergone deformation rates from 50 to 90% totally. The effect of post annealing in atmosphere of 7.5% O2/N2 on critical current density Jc for such (Bi, Pb)2Sr2Ca2Cu3Oy long bulks was investigated. Their microstructure features and phase changes were also studied.  相似文献   

12.
Several M dopants such as Al, Fe, and Co at the Cu site destroy the superconductivity of YBa2Cu3O6+z . However, superconductivity is restored by substituting Ca at the Y site. Arguments are developed to show that the oxygen chain disorder is not the only cause for destroying the superconductivity. A universal relation seems to exist between the net hole density as a result of Ca substitution andT c . To stabilize the perovskite structure of YSr2Cu3O6+z , it is necessary to substitute Cu by certain elements. Examples are given on Ti and Re substitution. Again, Ca cosubstitution increasesT c . Further, the irreversibility line is enhanced by Ca, indicating improved pinning in these materials in spite of the oxygen disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号